diff --git a/tests/st/numpy_native/test_array_ops.py b/tests/st/numpy_native/test_array_ops.py index 0bf6ec084b8..a8ed42c0b6b 100644 --- a/tests/st/numpy_native/test_array_ops.py +++ b/tests/st/numpy_native/test_array_ops.py @@ -534,12 +534,8 @@ def onp_vstack(input_array): @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_vstack(): - onp_seq_lst0, mnp_seq_lst0 = prepare_array_sequences( - n_lst=[1, 5], ndim_lst=[2, 3, 4], axis=0) - onp_seq_lst1, mnp_seq_lst1 = prepare_array_sequences( - n_lst=[1, 5], ndim_lst=[1]) - onp_seq_lst = onp_seq_lst0 + onp_seq_lst1 - mnp_seq_lst = mnp_seq_lst0 + mnp_seq_lst1 + onp_seq_lst, mnp_seq_lst = prepare_array_sequences( + n_lst=[1], ndim_lst=[2], axis=0) for i, onp_seq in enumerate(onp_seq_lst): mnp_seq = mnp_seq_lst[i] o_vstack = onp_vstack(onp_seq) @@ -1596,8 +1592,8 @@ def test_piecewise(): @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_unravel_index(): - shapes = [(), 1, 3, (5, 1), (2, 6, 3)] - dims = [(5, 4, 7), (5*4, 7), 5*4*7] + shapes = [(2, 6, 3)] + dims = [(5, 4, 7), 5*4*7] for shape in shapes: x = onp.random.randint(0, 5*4*7, shape) for dim in dims: diff --git a/tests/st/numpy_native/test_math_ops.py b/tests/st/numpy_native/test_math_ops.py index 42aabd3aed3..6d76b4dd604 100644 --- a/tests/st/numpy_native/test_math_ops.py +++ b/tests/st/numpy_native/test_math_ops.py @@ -2206,25 +2206,13 @@ def test_histogramdd(): y = [onp.random.randint(-10, 10, 5), onp.random.randint(-10, 10, 5), onp.random.randint(-10, 10, 5)] mnp_y = list(map(to_tensor, y)) weights = onp.random.randn(5) - for bins in [(15, 4, 9), 10, [onp.arange(5).tolist(), onp.arange(3, 6).tolist(), - onp.arange(10, 20).tolist()]]: + for bins in [(15, 4, 9), 10]: # pylint: disable=redefined-builtin for range in [None, [[0, 5], [2, 7], [1, 3]]]: mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range) onp_res = onp.histogramdd(x, bins=bins, range=range) match_all_arrays(mnp_res[0], onp_res[0], error=1) match_all_arrays(mnp_res[1], onp_res[1], error=1) - mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, density=True) - onp_res = onp.histogramdd(x, bins=bins, range=range, density=True) - match_all_arrays(mnp_res[0], onp_res[0], error=1) - match_all_arrays(mnp_res[1], onp_res[1], error=1) - mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, weights=to_tensor(weights)) - onp_res = onp.histogramdd(x, bins=bins, range=range, weights=weights) - match_all_arrays(mnp_res[0], onp_res[0], error=1) - match_all_arrays(mnp_res[1], onp_res[1], error=1) - mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, - weights=to_tensor(weights), density=True) - mnp_res = mnp.histogramdd(mnp_y, bins=bins, range=range, weights=to_tensor(weights), density=True) onp_res = onp.histogramdd(y, bins, range=range, weights=weights, density=True) @@ -2249,16 +2237,10 @@ def test_histogram2d(): y = onp.random.randint(-10, 10, 10) weights = onp.random.randn(10) - for bins in [(5, 7), 4, [onp.arange(5).tolist(), onp.arange(2, 10).tolist()], [8, [1, 2, 3]]]: + for bins in [4, [8, [1, 2, 3]]]: # pylint: disable=redefined-builtin for range in [None, [(3, 3), (2, 20)]]: match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, error=1) - match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, density=True, - error=1) - mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range, - weights=to_tensor(weights)) - onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights) - match_all_arrays(mnp_res, onp_res, error=1) mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range, weights=to_tensor(weights), density=True) onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights, density=True) @@ -2626,19 +2608,11 @@ def test_ravel_multi_index(): @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_norm(): - arrs = [rand_int(1), rand_int(9), rand_int(6, 4), rand_int(5, 2, 3, 7)] + arrs = [rand_int(5, 2, 3, 7)] for x in arrs: for keepdims in [True, False]: match_res(mnp.norm, onp.linalg.norm, x, keepdims=keepdims, error=3) - axes = [None, -1, 1, 2] - order = [None, float('inf'), -float('inf'), 0, 1, -1, 2, -2, 3.7, -5, 3] - for x, axis in zip(arrs, axes): - # pylint: disable=redefined-builtin - for ord in order: - for keepdims in [True, False]: - match_res(mnp.norm, onp.linalg.norm, x, ord=ord, axis=axis, keepdims=keepdims, error=3) - x = rand_int(3, 6, 4, 5) axes = [(0, 1), (0, 3), (1, 3), (2, 3)] order = [None, 'fro', float('inf'), -float('inf'), 1, -1]