diff --git a/mindspore/_checkparam.py b/mindspore/_checkparam.py index 61b7cc9818b..d553bcd3644 100644 --- a/mindspore/_checkparam.py +++ b/mindspore/_checkparam.py @@ -15,6 +15,7 @@ """Check parameters.""" import re from enum import Enum +from functools import reduce from itertools import repeat from collections import Iterable @@ -93,8 +94,131 @@ rel_strs = { } +class Validator: + """validator for checking input parameters""" + + @staticmethod + def check(arg_name, arg_value, value_name, value, rel=Rel.EQ, prim_name=None): + """ + Method for judging relation between two int values or list/tuple made up of ints. + + This method is not suitable for judging relation between floats, since it does not consider float error. + """ + + rel_fn = Rel.get_fns(rel) + if not rel_fn(arg_value, value): + rel_str = Rel.get_strs(rel).format(f'{value_name}: {value}') + msg_prefix = f'For {prim_name} the' if prim_name else "The" + raise ValueError(f'{msg_prefix} `{arg_name}` should be {rel_str}, but got {arg_value}.') + + @staticmethod + def check_integer(arg_name, arg_value, value, rel, prim_name): + """Integer value judgment.""" + rel_fn = Rel.get_fns(rel) + type_mismatch = not isinstance(arg_value, int) or isinstance(arg_value, bool) + if type_mismatch or not rel_fn(arg_value, value): + rel_str = Rel.get_strs(rel).format(value) + raise ValueError(f'For {prim_name} the `{arg_name}` should be an int and must {rel_str},' + f' but got {arg_value}.') + return arg_value + + @staticmethod + def check_int_range(arg_name, arg_value, lower_limit, upper_limit, rel, prim_name): + """Method for checking whether an int value is in some range.""" + rel_fn = Rel.get_fns(rel) + type_mismatch = not isinstance(arg_value, int) + if type_mismatch or not rel_fn(arg_value, lower_limit, upper_limit): + rel_str = Rel.get_strs(rel).format(lower_limit, upper_limit) + raise ValueError(f'For \'{prim_name}\' the `{arg_name}` should be an int in range {rel_str},' + f' but got {arg_value}.') + return arg_value + + @staticmethod + def check_subclass(arg_name, type_, template_type, prim_name): + """Check whether some type is sublcass of another type""" + if not isinstance(template_type, Iterable): + template_type = (template_type,) + if not any([mstype.issubclass_(type_, x) for x in template_type]): + type_str = (type(type_).__name__ if isinstance(type_, (tuple, list)) else "") + str(type_) + raise TypeError(f'For \'{prim_name}\' the type of `{arg_name}` should be subclass' + f' of {",".join((str(x) for x in template_type))}, but got {type_str}.') + + @staticmethod + def check_tensor_type_same(args, valid_values, prim_name): + """check whether the element types of input tensors are the same.""" + def _check_tensor_type(arg): + arg_key, arg_val = arg + Validator.check_subclass(arg_key, arg_val, mstype.tensor, prim_name) + elem_type = arg_val.element_type() + if not elem_type in valid_values: + raise TypeError(f'For \'{prim_name}\' element type of `{arg_key}` should be in {valid_values},' + f' but `{arg_key}` is {elem_type}.') + return (arg_key, elem_type) + + def _check_types_same(arg1, arg2): + arg1_name, arg1_type = arg1 + arg2_name, arg2_type = arg2 + if arg1_type != arg2_type: + raise TypeError(f'For \'{prim_name}\' element type of `{arg2_name}` should be same as `{arg1_name}`,' + f' but `{arg1_name}` is {arg1_type} and `{arg2_name}` is {arg2_type}.') + return arg1 + + elem_types = map(_check_tensor_type, args.items()) + reduce(_check_types_same, elem_types) + + + @staticmethod + def check_scalar_or_tensor_type_same(args, valid_values, prim_name): + """check whether the types of inputs are the same. if the input args are tensors, check their element types""" + def _check_argument_type(arg): + arg_key, arg_val = arg + if isinstance(arg_val, type(mstype.tensor)): + arg_val = arg_val.element_type() + if not arg_val in valid_values: + raise TypeError(f'For \'{prim_name}\' the `{arg_key}` should be in {valid_values},' + f' but `{arg_key}` is {arg_val}.') + return arg + + def _check_types_same(arg1, arg2): + arg1_name, arg1_type = arg1 + arg2_name, arg2_type = arg2 + excp_flag = False + if isinstance(arg1_type, type(mstype.tensor)) and isinstance(arg2_type, type(mstype.tensor)): + arg1_type = arg1_type.element_type() + arg2_type = arg2_type.element_type() + elif not (isinstance(arg1_type, type(mstype.tensor)) or isinstance(arg2_type, type(mstype.tensor))): + pass + else: + excp_flag = True + + if excp_flag or arg1_type != arg2_type: + raise TypeError(f'For \'{prim_name}\' type of `{arg2_name}` should be same as `{arg1_name}`,' + f' but `{arg1_name}` is {arg1_type} and `{arg2_name}` is {arg2_type}.') + return arg1 + reduce(_check_types_same, map(_check_argument_type, args.items())) + + @staticmethod + def check_value_type(arg_name, arg_value, valid_types, prim_name): + """Check whether a values is instance of some types.""" + def raise_error_msg(): + """func for raising error message when check failed""" + type_names = [t.__name__ for t in valid_types] + num_types = len(valid_types) + raise TypeError(f'For \'{prim_name}\' the type of `{arg_name}` should be ' + f'{"one of " if num_types > 1 else ""}' + f'{type_names if num_types > 1 else type_names[0]}, but got {type(arg_value).__name__}.') + + # Notice: bool is subclass of int, so `check_value_type('x', True, [int])` will check fail, and + # `check_value_type('x', True, [bool, int])` will check pass + if isinstance(arg_value, bool) and bool not in tuple(valid_types): + raise_error_msg() + if isinstance(arg_value, tuple(valid_types)): + return arg_value + raise_error_msg() + + class ParamValidator: - """Parameter validator.""" + """Parameter validator. NOTICE: this class will be replaced by `class Validator`""" @staticmethod def equal(arg_name, arg_value, cond_str, cond): diff --git a/mindspore/ops/_utils/broadcast.py b/mindspore/ops/_utils/broadcast.py index 2c9eb8a54ba..c71158de57b 100644 --- a/mindspore/ops/_utils/broadcast.py +++ b/mindspore/ops/_utils/broadcast.py @@ -16,13 +16,14 @@ """broadcast""" -def _get_broadcast_shape(x_shape, y_shape): +def _get_broadcast_shape(x_shape, y_shape, prim_name): """ Doing broadcast between tensor x and tensor y. Args: x_shape (list): The shape of tensor x. y_shape (list): The shape of tensor y. + prim_name (str): Primitive name. Returns: List, the shape that broadcast between tensor x and tensor y. @@ -50,7 +51,8 @@ def _get_broadcast_shape(x_shape, y_shape): elif x_shape[i] == y_shape[i]: broadcast_shape_back.append(x_shape[i]) else: - raise ValueError("The x_shape {} and y_shape {} can not broadcast.".format(x_shape, y_shape)) + raise ValueError("For '{}' the x_shape {} and y_shape {} can not broadcast.".format( + prim_name, x_shape, y_shape)) broadcast_shape_front = y_shape[0: y_len - length] if length == x_len else x_shape[0: x_len - length] broadcast_shape = broadcast_shape_front + broadcast_shape_back diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index 3dabf2ab0a1..53997ecce0e 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -28,9 +28,16 @@ from ..._checkparam import ParamValidator as validator from ..._checkparam import Rel from ...common import dtype as mstype from ...common.tensor import Tensor -from ..operations.math_ops import _check_infer_attr_reduce, _infer_shape_reduce +from ..operations.math_ops import _infer_shape_reduce from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register +def _check_infer_attr_reduce(axis, keep_dims): + validator.check_type('keep_dims', keep_dims, [bool]) + validator.check_type('axis', axis, [int, tuple]) + if isinstance(axis, tuple): + for index, value in enumerate(axis): + validator.check_type('axis[%d]' % index, value, [int]) + class ExpandDims(PrimitiveWithInfer): """ @@ -1091,7 +1098,7 @@ class ArgMaxWithValue(PrimitiveWithInfer): axis = self.axis x_rank = len(x_shape) validator.check_int_range("axis", axis, -x_rank, x_rank, Rel.INC_LEFT) - ouput_shape = _infer_shape_reduce(x_shape, self.axis, self.keep_dims) + ouput_shape = _infer_shape_reduce(x_shape, self.axis, self.keep_dims, self.prim_name()) return ouput_shape, ouput_shape def infer_dtype(self, x_dtype): @@ -1137,7 +1144,7 @@ class ArgMinWithValue(PrimitiveWithInfer): axis = self.axis x_rank = len(x_shape) validator.check_int_range("axis", axis, -x_rank, x_rank, Rel.INC_LEFT) - ouput_shape = _infer_shape_reduce(x_shape, self.axis, self.keep_dims) + ouput_shape = _infer_shape_reduce(x_shape, self.axis, self.keep_dims, self.prim_name()) return ouput_shape, ouput_shape def infer_dtype(self, x_dtype): diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index b7373416f96..1411bcb8e6f 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -19,7 +19,7 @@ import numpy as np from ..._c_expression import signature_rw as sig_rw from ..._c_expression import signature_kind as sig_kind from ..._c_expression import signature_dtype as sig_dtype -from ..._checkparam import ParamValidator as validator +from ..._checkparam import Validator as validator from ..._checkparam import Rel from ...common import dtype as mstype from ...common.tensor import Tensor @@ -27,16 +27,16 @@ from .._utils import _get_broadcast_shape from ..primitive import PrimitiveWithInfer, prim_attr_register -def _infer_shape_reduce(x, axis, keep_dims): +def _infer_shape_reduce(x, axis, keep_dims, prim_name): """Common infer for reduce operator""" def reduce_one_axis(one_axis): - validator.check_int_range('axis', one_axis, -dim, dim, Rel.INC_LEFT) + validator.check_int_range('axis', one_axis, -dim, dim, Rel.INC_LEFT, prim_name) if one_axis < 0: one_axis += dim axis_reduce.add(one_axis) - validator.check_type('axis', axis, [int, tuple, list]) + validator.check_value_type('axis', axis, [int, tuple, list], prim_name) dim = len(x) axis_reduce = set() @@ -48,7 +48,7 @@ def _infer_shape_reduce(x, axis, keep_dims): return [1] * dim return [] for index, one_axis in enumerate(axis): - validator.check_type('axis[%d]' % index, one_axis, [int]) + validator.check_value_type('axis[%d]' % index, one_axis, [int], prim_name) reduce_one_axis(one_axis) out_shape = [] @@ -61,14 +61,6 @@ def _infer_shape_reduce(x, axis, keep_dims): return out_shape -def _check_infer_attr_reduce(axis, keep_dims): - validator.check_type('keep_dims', keep_dims, [bool]) - validator.check_type('axis', axis, [int, tuple]) - if isinstance(axis, tuple): - for index, value in enumerate(axis): - validator.check_type('axis[%d]' % index, value, [int]) - - class _BinaryOp(PrimitiveWithInfer): """ Define binary operators. @@ -82,7 +74,7 @@ class _BinaryOp(PrimitiveWithInfer): self.init_prim_io_names(inputs=['x', 'y'], outputs=['output']) def infer_shape(self, x_shape, y_shape): - return _get_broadcast_shape(x_shape, y_shape) + return _get_broadcast_shape(x_shape, y_shape, self.prim_name()) class _MathBinaryOp(_BinaryOp): @@ -91,15 +83,13 @@ class _MathBinaryOp(_BinaryOp): """ @staticmethod - def do_infer_dtype(x_dtype, y_dtype, valid_dtype=mstype.number_type): + def do_infer_dtype(x_dtype, y_dtype, valid_dtype=mstype.number_type, prim_name=None): args_type = {"x": x_dtype, "y": y_dtype} - validator.check_args_tensor(args_type) - args_dtype = {"x_dtype": x_dtype, "y_dtype": y_dtype} - validator.check_type_same(args_dtype, valid_dtype) + validator.check_tensor_type_same(args_type, valid_dtype, prim_name) return x_dtype def infer_dtype(self, x_dtype, y_dtype): - return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype) + return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type, self.prim_name()) class TensorAdd(_MathBinaryOp): @@ -166,7 +156,7 @@ class AssignAdd(PrimitiveWithInfer): def infer_dtype(self, variable, value): args = {"value": value} - validator.check_type_same(args, mstype.number_type) + validator.check_scalar_or_tensor_type_same(args, mstype.number_type, self.prim_name()) return value @@ -207,7 +197,7 @@ class AssignSub(PrimitiveWithInfer): def infer_dtype(self, variable, value): args = {"value": value} - validator.check_type_same(args, mstype.number_type) + validator.check_scalar_or_tensor_type_same(args, mstype.number_type, self.prim_name()) return value @@ -228,15 +218,16 @@ class _Reduce(PrimitiveWithInfer): @prim_attr_register def __init__(self, keep_dims=False): """init Reduce""" - validator.check_type('keep_dims', keep_dims, [bool]) + validator.check_value_type('keep_dims', keep_dims, [bool], self.prim_name()) self.init_prim_io_names(inputs=['input_x', 'axis'], outputs=['y']) def do_infer(self, input_x, axis, valid_dtype=mstype.number_type): axis_v = axis['value'] input_shp = input_x['shape'] - validator.check_subclass('input_x', input_x['dtype'], mstype.tensor) - validator.check_typename('input_x', input_x['dtype'], valid_dtype) - input_shp = _infer_shape_reduce(input_shp, axis_v, self.keep_dims) + args = {'input_x': input_x['dtype']} + validator.check_tensor_type_same(args, valid_dtype, self.prim_name()) + + input_shp = _infer_shape_reduce(input_shp, axis_v, self.keep_dims, self.prim_name()) return {'shape': input_shp, 'dtype': input_x['dtype'], 'value': None} @@ -471,16 +462,17 @@ class CumProd(PrimitiveWithInfer): """ @prim_attr_register def __init__(self, exclusive=False, reverse=False): - self.exclusive = validator.check_type("exclusive", exclusive, [bool]) - self.reverse = validator.check_type("reverse", reverse, [bool]) + cls_name = self.prim_name() + self.exclusive = validator.check_value_type("exclusive", exclusive, [bool], cls_name) + self.reverse = validator.check_value_type("reverse", reverse, [bool], cls_name) def infer_shape(self, x_shape, axis_shape): return x_shape def infer_dtype(self, x_type, axis_type): - validator.check_subclass('x_type', x_type, mstype.tensor) - validator.check_typename('x_type', x_type, mstype.number_type) - validator.check_subclass("axis_type", axis_type, mstype.int_) + cls_name = self.prim_name() + validator.check_tensor_type_same({'x': x_type}, mstype.number_type, cls_name) + validator.check_subclass("axis", axis_type, mstype.int_, cls_name) return x_type @@ -514,8 +506,9 @@ class MatMul(PrimitiveWithInfer): def __init__(self, transpose_a=False, transpose_b=False): self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['output']) self.__setattr_flag__ = True - validator.check_type("transpose_a", transpose_a, [bool]) - validator.check_type("transpose_b", transpose_b, [bool]) + cls_name = self.prim_name() + validator.check_value_type("transpose_a", transpose_a, [bool], cls_name) + validator.check_value_type("transpose_b", transpose_b, [bool], cls_name) def check_shape_size(self, x, y): if len(x) != 2 or len(y) != 2: @@ -524,11 +517,11 @@ class MatMul(PrimitiveWithInfer): def infer_shape(self, x, y): self.check_shape_size(x, y) - cls_name = self.__class__.__name__ + cls_name = self.prim_name() # expected dimension of x, y, x:[...,a,b] y:[..., c,d], the dim size should be the same except the last two for i in range(len(x) - 2): if x[i] != y[i]: - raise ValueError(f'{cls_name} shape in dim[{i}] not the same, while x is {x[i]}, y is {y[i]}') + raise ValueError(f'For \'{cls_name}\' shape in dim[{i}] not the same, while x is {x[i]}, y is {y[i]}') # validate whether last two dims satifing matrix multiply x_last = x[-2:] @@ -537,8 +530,8 @@ class MatMul(PrimitiveWithInfer): x_col = x_last[not self.transpose_a] # x_col = x_last[1] if (not transpose_a) else x_last[0] y_row = y_last[self.transpose_b] # y_row = y_last[0] if (not transpose_b) else y_last[1] if x_col != y_row: - raise ValueError(f'{cls_name} evaluator shapes of inputs can not do this operator, got {x_col} and {y_row}' - + f' for {cls_name}, with x shape {x}(transpose_a={self.transpose_a})' + raise ValueError(f'For \'{cls_name}\' evaluator shapes of inputs can not do this operator,' + + f' got {x_col} and {y_row}, with x shape {x}(transpose_a={self.transpose_a})' + f', y shape {y}(transpose_b={self.transpose_b}).') # set attribute self.add_prim_attr('transpose_x1', self.transpose_a) @@ -548,10 +541,8 @@ class MatMul(PrimitiveWithInfer): return ret_dims def infer_dtype(self, x, y): - validator.check_subclass("x", x, mstype.tensor) - validator.check_subclass("y", y, mstype.tensor) - args = {"x dtype": x, "y dtype": y} - validator.check_type_same(args, mstype.float_type + mstype.int_type) + args = {"x": x, "y": y} + validator.check_tensor_type_same(args, mstype.float_type + mstype.int_type, self.prim_name()) return x @@ -595,12 +586,13 @@ class BatchMatMul(MatMul): def __init__(self, transpose_a=False, transpose_b=False): self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['output']) self.__setattr_flag__ = True - validator.check_type("transpose_a", transpose_a, [bool]) - validator.check_type("transpose_b", transpose_b, [bool]) + cls_name = self.prim_name() + validator.check_value_type("transpose_a", transpose_a, [bool], cls_name) + validator.check_value_type("transpose_b", transpose_b, [bool], cls_name) def check_shape_size(self, x, y): if len(x) != len(y) or len(x) < 3: - raise ValueError('BatchMatMul input x, y should be the same dimension size and should be ' + raise ValueError('For \'BatchMatMul\' input x, y should be the same dimension size and should be ' 'greater or equal to 3,' + f' while x size = {len(x)}, y size= {len(y)}') @@ -632,18 +624,17 @@ class CumSum(PrimitiveWithInfer): @prim_attr_register def __init__(self, exclusive=False, reverse=False): """init cumsum""" - self.exclusive = validator.check_type('exclusive', exclusive, [bool]) - self.add_prim_attr("exclusive", self.exclusive) - self.reverse = validator.check_type('reverse', reverse, [bool]) - self.add_prim_attr("reverse", self.reverse) + cls_name = self.prim_name() + validator.check_value_type('exclusive', exclusive, [bool], cls_name) + validator.check_value_type('reverse', reverse, [bool], cls_name) self.init_prim_io_names(inputs=['x', 'axis'], outputs=['y']) def __infer__(self, x, axis): + cls_name = self.prim_name() x_shp = x['shape'] - validator.check_type('axis', axis['value'], [int]) - validator.check_subclass('x', x['dtype'], mstype.tensor) - validator.check_typename('x', x['dtype'], [mstype.uint8, mstype.int8, - mstype.int32, mstype.float16, mstype.float32]) + validator.check_value_type('axis', axis['value'], [int], cls_name) + valid_types = [mstype.uint8, mstype.int8, mstype.int32, mstype.float16, mstype.float32] + validator.check_tensor_type_same({'x': x['dtype']}, valid_types, cls_name) return {'shape': x_shp, 'dtype': x['dtype'], 'value': None} @@ -684,21 +675,22 @@ class AddN(PrimitiveWithInfer): self.init_prim_io_names(inputs=["inputs"], outputs=["sum"]) def infer_shape(self, inputs): - validator.check_integer("inputs", len(inputs), 1, Rel.GE) + cls_name = self.prim_name() + validator.check_integer("inputs", len(inputs), 1, Rel.GE, cls_name) self.add_prim_attr('n', len(inputs)) shp0 = inputs[0] for i, shp in enumerate(inputs): - validator.check(f"shape of inputs[{i}]", shp, 'shape of inputs[0]', shp0) + validator.check(f"shape of inputs[{i}]", shp, 'shape of inputs[0]', shp0, Rel.EQ, cls_name) return shp0 def infer_dtype(self, inputs): - validator.check_type("inputs", inputs, [tuple, list]) - validator.check_integer("inputs", len(inputs), 1, Rel.GE) + cls_name = self.prim_name() + validator.check_value_type("inputs", inputs, [tuple, list], cls_name) + validator.check_integer("inputs", len(inputs), 1, Rel.GE, cls_name) args = {} for i, dtype in enumerate(inputs): - validator.check_subclass(f"inputs[{i}]", dtype, mstype.tensor) args[f"inputs[{i}]"] = dtype - validator.check_type_same(args, mstype.number_type + (mstype.bool_,)) + validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), cls_name) return inputs[0] @@ -722,8 +714,7 @@ class Neg(PrimitiveWithInfer): return input_x def infer_dtype(self, input_x): - validator.check_subclass("input_x", input_x, mstype.tensor) - validator.check_typename("input_x", input_x, mstype.number_type) + validator.check_tensor_type_same({"input_x": input_x}, mstype.number_type, self.prim_name()) return input_x @@ -806,8 +797,7 @@ class Square(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_type): - validator.check_subclass("x", x_type, mstype.tensor) - validator.check_typename("x_dtype", x_type, mstype.number_type) + validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.prim_name()) return x_type @@ -836,8 +826,7 @@ class Rsqrt(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_type): - validator.check_subclass("x", x_type, mstype.tensor) - validator.check_typename("x_dtype", x_type, mstype.number_type) + validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.prim_name()) return x_type @@ -866,8 +855,7 @@ class Sqrt(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_type): - validator.check_subclass("x", x_type, mstype.tensor) - validator.check_typename("x_dtype", x_type, mstype.number_type) + validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.prim_name()) return x_type @@ -897,7 +885,7 @@ class Reciprocal(PrimitiveWithInfer): return x def infer_dtype(self, x): - validator.check_subclass("x", x, mstype.tensor) + validator.check_subclass("x", x, mstype.tensor, self.prim_name()) return x @@ -935,8 +923,7 @@ class Pow(PrimitiveWithInfer): return x def infer_dtype(self, x, power): - validator.check_subclass("x", x, mstype.tensor) - validator.check_typename("power", power, mstype.number_type) + validator.check_tensor_type_same({"x": x}, mstype.number_type, self.prim_name()) return x @@ -966,7 +953,7 @@ class Exp(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_type): - validator.check_subclass("x", x_type, mstype.tensor) + validator.check_subclass("x", x_type, mstype.tensor, self.prim_name()) return x_type @@ -995,7 +982,7 @@ class Log(PrimitiveWithInfer): return x def infer_dtype(self, x): - validator.check_subclass("x", x, mstype.tensor) + validator.check_subclass("x", x, mstype.tensor, self.prim_name()) return x @@ -1178,8 +1165,7 @@ class Floor(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_dtype): - validator.check_subclass("x", x_dtype, mstype.tensor) - validator.check_typename("x_dtype", x_dtype, mstype.float_type) + validator.check_tensor_type_same({"x": x_dtype}, mstype.float_type, self.prim_name()) return x_dtype @@ -1234,8 +1220,7 @@ class Acosh(PrimitiveWithInfer): return x def infer_dtype(self, x): - validator.check_subclass("x_dtype", x, mstype.tensor) - validator.check_typename('x_dtype', x, mstype.number_type) + validator.check_tensor_type_same({'x': x}, mstype.number_type, self.prim_name()) return x @@ -1245,15 +1230,13 @@ class _LogicBinaryOp(_BinaryOp): """ @staticmethod - def do_infer_dtype(x_dtype, y_dtype, valid_type=mstype.number_type): - args_type = {"x": x_dtype, "y": y_dtype} - validator.check_args_tensor(args_type) - args_dtype = {"x_dtype": x_dtype, "y_dtype": y_dtype} - validator.check_type_same(args_dtype, valid_type) + def do_infer_dtype(x_dtype, y_dtype, valid_type=mstype.number_type, prim_name=None): + args_dtype = {"x": x_dtype, "y": y_dtype} + validator.check_tensor_type_same(args_dtype, valid_type, prim_name) return mstype.tensor_type(mstype.bool_) def infer_dtype(self, x_dtype, y_dtype): - return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype) + return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, prim_name=self.prim_name()) class Equal(_LogicBinaryOp): @@ -1289,7 +1272,7 @@ class Equal(_LogicBinaryOp): """ def infer_dtype(self, x_dtype, y_dtype): - return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,)) + return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,), self.prim_name()) class EqualCount(PrimitiveWithInfer): @@ -1318,11 +1301,13 @@ class EqualCount(PrimitiveWithInfer): """init EqualCount""" self.init_prim_io_names(inputs=['x', 'y'], outputs=['output']) - def infer_shape(self, x_shape, w_shape): + def infer_shape(self, x_shape, y_shape): output_shape = (1,) return output_shape - def infer_dtype(self, x_dtype, w_dtype): + def infer_dtype(self, x_dtype, y_dtype): + args = {'x': x_dtype, 'y': y_dtype} + validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), self.prim_name()) return x_dtype @@ -1359,7 +1344,7 @@ class NotEqual(_LogicBinaryOp): """ def infer_dtype(self, x_dtype, y_dtype): - return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,)) + return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,), self.prim_name()) class Greater(_LogicBinaryOp): @@ -1495,8 +1480,7 @@ class LogicalNot(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_dtype): - validator.check_subclass("x", x_dtype, mstype.tensor) - validator.check_typename("x_dtype", x_dtype, [mstype.bool_]) + validator.check_tensor_type_same({"x": x_dtype}, [mstype.bool_], self.prim_name()) return mstype.tensor_type(mstype.bool_) @@ -1526,7 +1510,7 @@ class LogicalAnd(_LogicBinaryOp): """ def infer_dtype(self, x_dtype, y_dtype): - return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,)) + return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.prim_name()) class LogicalOr(_LogicBinaryOp): @@ -1555,7 +1539,7 @@ class LogicalOr(_LogicBinaryOp): """ def infer_dtype(self, x_dtype, y_dtype): - return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,)) + return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.prim_name()) class NPUAllocFloatStatus(PrimitiveWithInfer): @@ -1616,13 +1600,13 @@ class NPUGetFloatStatus(PrimitiveWithInfer): self.add_prim_attr("_side_effect_flag", True) def infer_shape(self, x_shape): - validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ) - validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ) + cls_name = self.prim_name() + validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ, cls_name) + validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ, cls_name) return [8] def infer_dtype(self, x_dtype): - args = {"x_dtype": x_dtype} - validator.check_type_same(args, [mstype.float32]) + validator.check_tensor_type_same({'x': x_dtype}, [mstype.float32], self.prim_name()) return mstype.float32 @@ -1658,13 +1642,13 @@ class NPUClearFloatStatus(PrimitiveWithInfer): self.add_prim_attr("_side_effect_flag", True) def infer_shape(self, x_shape): - validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ) - validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ) + cls_name = self.prim_name() + validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ, cls_name) + validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ, cls_name) return [8] def infer_dtype(self, x_dtype): - args = {"x_dtype": x_dtype} - validator.check_type_same(args, [mstype.float32]) + validator.check_tensor_type_same({'x': x_dtype}, [mstype.float32], self.prim_name()) return mstype.float32 @@ -1692,8 +1676,7 @@ class Cos(PrimitiveWithInfer): return x def infer_dtype(self, x): - validator.check_subclass("x_dtype", x, mstype.tensor) - validator.check_typename('x_dtype', x, mstype.number_type) + validator.check_tensor_type_same({'x': x}, mstype.number_type, self.prim_name()) return x @@ -1721,8 +1704,7 @@ class ACos(PrimitiveWithInfer): return x def infer_dtype(self, x): - validator.check_subclass("x_dtype", x, mstype.tensor) - validator.check_typename('x_dtype', x, mstype.number_type) + validator.check_tensor_type_same({'x': x}, mstype.number_type, self.prim_name()) return x @@ -1750,8 +1732,7 @@ class Sin(PrimitiveWithInfer): return x def infer_dtype(self, x): - validator.check_subclass("x_dtype", x, mstype.tensor) - validator.check_typename('x_dtype', x, mstype.number_type) + validator.check_tensor_type_same({'x': x}, mstype.number_type, self.prim_name()) return x @@ -1796,19 +1777,19 @@ class NMSWithMask(PrimitiveWithInfer): @prim_attr_register def __init__(self, iou_threshold=0.5): """Init NMSWithMask""" - validator.check_type("iou_threshold", iou_threshold, [float]) + validator.check_value_type("iou_threshold", iou_threshold, [float], self.prim_name()) self.init_prim_io_names(inputs=['bboxes'], outputs=['selected_boxes', 'selected_idx', 'selected_mask']) def infer_shape(self, bboxes_shape): - validator.check_integer("bboxes rank", len(bboxes_shape), 2, Rel.EQ) - validator.check_integer("bboxes.shape()[0]", bboxes_shape[0], 0, Rel.GT) - validator.check_integer("bboxes.shape()[1]", bboxes_shape[1], 5, Rel.EQ) + cls_name = self.prim_name() + validator.check_integer("bboxes rank", len(bboxes_shape), 2, Rel.EQ, cls_name) + validator.check_integer("bboxes.shape()[0]", bboxes_shape[0], 0, Rel.GT, cls_name) + validator.check_integer("bboxes.shape()[1]", bboxes_shape[1], 5, Rel.EQ, cls_name) num = bboxes_shape[0] return (bboxes_shape, (num,), (num,)) def infer_dtype(self, bboxes_dtype): - validator.check_subclass("bboxes_dtype", bboxes_dtype, mstype.tensor) - validator.check_typename("bboxes_dtype", bboxes_dtype, [mstype.float16, mstype.float32]) + validator.check_tensor_type_same({"bboxes": bboxes_dtype}, [mstype.float16, mstype.float32], self.prim_name()) return (bboxes_dtype, mstype.int32, mstype.bool_) @@ -1837,8 +1818,7 @@ class Abs(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_type): - validator.check_subclass("x_dtype", x_type, mstype.tensor) - validator.check_typename('x_dtype', x_type, mstype.number_type) + validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.prim_name()) return x_type def infer_value(self, x): @@ -1880,8 +1860,7 @@ class Sign(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_dtype): - validator.check_subclass('x', x_dtype, mstype.tensor) - validator.check_typename('x_dtype', x_dtype, mstype.number_type) + validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.prim_name()) return x_dtype @@ -1910,8 +1889,7 @@ class Round(PrimitiveWithInfer): return x_shape def infer_dtype(self, x_type): - validator.check_subclass("x_dtype", x_type, mstype.tensor) - validator.check_typename('x_dtype', x_type, mstype.number_type) + validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.prim_name()) return x_type diff --git a/mindspore/ops/primitive.py b/mindspore/ops/primitive.py index d281b4f76ca..96e754f5f7d 100644 --- a/mindspore/ops/primitive.py +++ b/mindspore/ops/primitive.py @@ -194,6 +194,9 @@ class PrimitiveWithInfer(Primitive): Primitive.__init__(self, name) self.set_prim_type(prim_type.py_infer_shape) + def prim_name(self): + return self.__class__.__name__ + def _clone(self): """ Deeply clones the primitive object. diff --git a/tests/mindspore_test_framework/components/executor/check_exceptions.py b/tests/mindspore_test_framework/components/executor/check_exceptions.py index eca0578b7ff..fe57a3d287e 100644 --- a/tests/mindspore_test_framework/components/executor/check_exceptions.py +++ b/tests/mindspore_test_framework/components/executor/check_exceptions.py @@ -23,20 +23,25 @@ from ...utils import keyword class CheckExceptionsEC(IExectorComponent): """ - Check if the function raises the expected Exception. + Check if the function raises the expected Exception and the error message contains specified keywords if not None. Examples: { 'block': f, - 'exception': Exception + 'exception': Exception, + 'error_keywords': ['TensorAdd', 'shape'] } """ def run_function(self, function, inputs, verification_set): f = function[keyword.block] args = inputs[keyword.desc_inputs] e = function.get(keyword.exception, Exception) + error_kws = function.get(keyword.error_keywords, None) try: - with pytest.raises(e): + with pytest.raises(e) as exec_info: f(*args) except: raise Exception(f"Expect {e}, but got {sys.exc_info()[0]}") + if error_kws and any(keyword not in str(exec_info.value) for keyword in error_kws): + raise ValueError('Error message `{}` does not contain all keywords `{}`'.format( + str(exec_info.value), error_kws)) diff --git a/tests/mindspore_test_framework/utils/config_util.py b/tests/mindspore_test_framework/utils/config_util.py index d2eb91d042c..b7be15ac23d 100644 --- a/tests/mindspore_test_framework/utils/config_util.py +++ b/tests/mindspore_test_framework/utils/config_util.py @@ -87,8 +87,9 @@ def get_function_config(function): init_param_with = function.get(keyword.init_param_with, None) split_outputs = function.get(keyword.split_outputs, True) exception = function.get(keyword.exception, Exception) + error_keywords = function.get(keyword.error_keywords, None) return delta, max_error, input_selector, output_selector, sampling_times, \ - reduce_output, init_param_with, split_outputs, exception + reduce_output, init_param_with, split_outputs, exception, error_keywords def get_grad_checking_options(function, inputs): """ @@ -104,6 +105,6 @@ def get_grad_checking_options(function, inputs): """ f = function[keyword.block] args = inputs[keyword.desc_inputs] - delta, max_error, input_selector, output_selector, sampling_times, reduce_output, _, _, _ = \ + delta, max_error, input_selector, output_selector, sampling_times, reduce_output, _, _, _, _ = \ get_function_config(function) return f, args, delta, max_error, input_selector, output_selector, sampling_times, reduce_output diff --git a/tests/mindspore_test_framework/utils/facade_util.py b/tests/mindspore_test_framework/utils/facade_util.py index bbbf1dd375e..4c5896b3df2 100644 --- a/tests/mindspore_test_framework/utils/facade_util.py +++ b/tests/mindspore_test_framework/utils/facade_util.py @@ -54,11 +54,12 @@ def fill_block_config(ret, block_config, tid, group, desc_inputs, desc_bprop, ex block = block_config delta, max_error, input_selector, output_selector, \ - sampling_times, reduce_output, init_param_with, split_outputs, exception = get_function_config({}) + sampling_times, reduce_output, init_param_with, split_outputs, exception, error_keywords = get_function_config({}) if isinstance(block_config, tuple) and isinstance(block_config[-1], dict): block = block_config[0] delta, max_error, input_selector, output_selector, \ - sampling_times, reduce_output, init_param_with, split_outputs, exception = get_function_config(block_config[-1]) + sampling_times, reduce_output, init_param_with, \ + split_outputs, exception, error_keywords = get_function_config(block_config[-1]) if block: func_list.append({ @@ -78,7 +79,8 @@ def fill_block_config(ret, block_config, tid, group, desc_inputs, desc_bprop, ex keyword.const_first: const_first, keyword.add_fake_input: add_fake_input, keyword.split_outputs: split_outputs, - keyword.exception: exception + keyword.exception: exception, + keyword.error_keywords: error_keywords }) if desc_inputs or desc_const: diff --git a/tests/mindspore_test_framework/utils/keyword.py b/tests/mindspore_test_framework/utils/keyword.py index 16618be70a4..79f1f91d8fe 100644 --- a/tests/mindspore_test_framework/utils/keyword.py +++ b/tests/mindspore_test_framework/utils/keyword.py @@ -73,5 +73,6 @@ keyword.const_first = "const_first" keyword.add_fake_input = "add_fake_input" keyword.fake_input_type = "fake_input_type" keyword.exception = "exception" +keyword.error_keywords = "error_keywords" sys.modules[__name__] = keyword diff --git a/tests/ut/python/ops/test_array_ops.py b/tests/ut/python/ops/test_array_ops.py index 1c4895465f4..faaa9d5402a 100644 --- a/tests/ut/python/ops/test_array_ops.py +++ b/tests/ut/python/ops/test_array_ops.py @@ -234,7 +234,7 @@ raise_set = [ 'block': (lambda x: P.Squeeze(axis=((1.2, 1.3))), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}), ('ReduceSum_Error', { - 'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': ValueError}), + 'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': TypeError}), 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}), ] diff --git a/tests/ut/python/ops/test_math_ops_check.py b/tests/ut/python/ops/test_math_ops_check.py new file mode 100755 index 00000000000..be6e5691ea5 --- /dev/null +++ b/tests/ut/python/ops/test_math_ops_check.py @@ -0,0 +1,751 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" test ops """ +import functools +import numpy as np +from mindspore import ops +from mindspore.ops import functional as F +from mindspore.ops import operations as P +from mindspore.ops.operations import _grad_ops as G +import mindspore.ops.composite as C +import mindspore.nn as nn +from mindspore import Tensor +from mindspore.common import dtype as mstype +from mindspore.common.parameter import Parameter +from ..ut_filter import non_graph_engine +from mindspore.common.api import _executor + +from ....mindspore_test_framework.mindspore_test import mindspore_test +from ....mindspore_test_framework.pipeline.forward.compile_forward\ + import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config, + pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) +from ....mindspore_test_framework.pipeline.gradient.compile_gradient\ + import pipeline_for_compile_grad_ge_graph_for_case_by_case_config + + +class AssignAddNet(nn.Cell): + def __init__(self,): + super(AssignAddNet, self).__init__() + self.op = P.AssignAdd() + self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_add1") + + def construct(self, x): + self.op(self.inputdata, x) + return self.inputdata + + +class AssignSubNet(nn.Cell): + def __init__(self,): + super(AssignSubNet, self).__init__() + self.op = P.AssignSub() + self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_sub1") + + def construct(self, x): + self.op(self.inputdata, x) + return self.inputdata + + +class ReduceNet(nn.Cell): + def __init__(self, op_class, keep_dims, axis): + super(ReduceNet, self).__init__() + self.axis = axis + self.op = op_class(keep_dims=keep_dims) + + def construct(self, x): + return self.op(x, self.axis) + + +class CumProdNet(nn.Cell): + def __init__(self): + super(CumProdNet, self).__init__() + self.op = P.CumProd() + + def construct(self, x, axis): + return self.op(x, axis) + + +class CumSumNet(nn.Cell): + def __init__(self, axis): + super(CumSumNet, self).__init__() + self.axis = axis + self.op = P.CumSum() + + def construct(self, x): + return self.op(x, self.axis) + + +raise_set = [ + # one input is scalar, and another is Tensor(float32) + ('TensorAdd0', { + 'block': (P.TensorAdd(), {'exception': TypeError, 'error_keywords': ['TensorAdd']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('TensorAdd1', { + 'block': (P.TensorAdd(), {'exception': TypeError, 'error_keywords': ['TensorAdd']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('TensorAdd2', { + 'block': (P.TensorAdd(), {'exception': ValueError, 'error_keywords': ['TensorAdd']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # check input Tensor(bool_) + ('AssignAdd', { + 'block': (AssignAddNet(), {'exception': TypeError, 'error_keywords': ['AssignAdd']}), + 'desc_inputs': [Tensor(np.ones([1]).astype(np.bool_), mstype.bool_)], + 'skip': ['backward']}), + + # check input Tensor(bool_) + ('AssignSub', { + 'block': (AssignSubNet(), {'exception': TypeError, 'error_keywords': ['AssignSub']}), + 'desc_inputs': [Tensor(np.ones([1]).astype(np.bool_), mstype.bool_)], + 'skip': ['backward']}), + + # type of axis is float, not int + ('ReduceMean1', { + 'block': (ReduceNet(P.ReduceMean, keep_dims=True, axis=5.0), + {'exception': TypeError, 'error_keywords': ['ReduceMean']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + # axis is out of range + ('ReduceMean2', { + 'block': (ReduceNet(P.ReduceMean, keep_dims=True, axis=5), + {'exception': ValueError, 'error_keywords': ['ReduceMean']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + + # type of axis is float, not int + ('ReduceSum1', { + 'block': (ReduceNet(P.ReduceSum, keep_dims=True, axis=5.0), + {'exception': TypeError, 'error_keywords': ['ReduceSum']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + # axis is out of range + ('ReduceSum2', { + 'block': (ReduceNet(P.ReduceSum, keep_dims=True, axis=5), + {'exception': ValueError, 'error_keywords': ['ReduceSum']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + + # type of axis is float, not int + ('ReduceAll1', { + 'block': (ReduceNet(P.ReduceAll, keep_dims=True, axis=5.0), + {'exception': TypeError, 'error_keywords': ['ReduceAll']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool_))], + 'skip': ['backward']}), + # axis is out of range + ('ReduceAll2', { + 'block': (ReduceNet(P.ReduceAll, keep_dims=True, axis=5), + {'exception': ValueError, 'error_keywords': ['ReduceAll']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool_))], + 'skip': ['backward']}), + + # type of axis is float, not int + ('ReduceMax1', { + 'block': (ReduceNet(P.ReduceMax, keep_dims=True, axis=5.0), + {'exception': TypeError, 'error_keywords': ['ReduceMax']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + # axis is out of range + ('ReduceMax2', { + 'block': (ReduceNet(P.ReduceMax, keep_dims=True, axis=5), + {'exception': ValueError, 'error_keywords': ['ReduceMax']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + + # type of axis is float, not int + ('ReduceMin1', { + 'block': (ReduceNet(P.ReduceMin, keep_dims=True, axis=5.0), + {'exception': TypeError, 'error_keywords': ['ReduceMin']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + # axis is out of range + ('ReduceMin2', { + 'block': (ReduceNet(P.ReduceMin, keep_dims=True, axis=5), + {'exception': ValueError, 'error_keywords': ['ReduceMin']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + + # type of axis is float, not int + ('ReduceProd1', { + 'block': (ReduceNet(P.ReduceProd, keep_dims=True, axis=5.0), + {'exception': TypeError, 'error_keywords': ['ReduceProd']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + # axis is out of range + ('ReduceProd2', { + 'block': (ReduceNet(P.ReduceProd, keep_dims=True, axis=5), + {'exception': ValueError, 'error_keywords': ['ReduceProd']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))], + 'skip': ['backward']}), + + # type of x is Tensor(bool) + ('CumProd1', { + 'block': (CumProdNet(), + {'exception': TypeError, 'error_keywords': ['CumProd']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool)), 1], + 'skip': ['backward']}), + # type of axis in float, not int + ('CumProd2', { + 'block': (CumProdNet(), + {'exception': TypeError, 'error_keywords': ['CumProd']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32)), 5.0], + 'skip': ['backward']}), + + # type of x and y are Tensor(uint32) + ('MatMul1', { + 'block': (P.MatMul(), + {'exception': TypeError, 'error_keywords': ['MatMul']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.uint32)), Tensor(np.ones([3, 2]).astype(np.uint32))], + 'skip': ['backward']}), + # type of x and y not match + ('MatMul2', { + 'block': (P.MatMul(), + {'exception': TypeError, 'error_keywords': ['MatMul']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.int32))], + 'skip': ['backward']}), + # shape of x and y not match + ('MatMul3', { + 'block': (P.MatMul(), + {'exception': ValueError, 'error_keywords': ['MatMul']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([2, 3]).astype(np.float32))], + 'skip': ['backward']}), + + # dims of x and y are less than 3 + ('BatchMatMul1', { + 'block': (P.BatchMatMul(), + {'exception': ValueError, 'error_keywords': ['BatchMatMul']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.int32)), Tensor(np.ones([3, 2]).astype(np.int32))], + 'skip': ['backward']}), + + # type of x is Tensor(bool) + ('CumSum1', { + 'block': (CumSumNet(axis=1), + {'exception': TypeError, 'error_keywords': ['CumSum']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool))], + 'skip': ['backward']}), + # type of axis in float, not int + ('CumSum2', { + 'block': (CumSumNet(axis=1.0), + {'exception': TypeError, 'error_keywords': ['CumSum']}), + 'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool))], + 'skip': ['backward']}), + + # intput is not tuple or list + ('AddN1', { + 'block': (P.AddN(), + {'exception': TypeError, 'error_keywords': ['AddN']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.uint32))], + 'skip': ['backward']}), + # type not match + ('AddN2', { + 'block': (P.AddN(), + {'exception': TypeError, 'error_keywords': ['AddN']}), + 'desc_inputs': [(Tensor(np.ones([2, 3]).astype(np.uint32)), Tensor(np.ones([3, 2]).astype(np.int32)))], + 'skip': ['backward']}), + # shape not match + ('AddN3', { + 'block': (P.AddN(), + {'exception': ValueError, 'error_keywords': ['AddN']}), + 'desc_inputs': [(Tensor(np.ones([2, 3]).astype(np.int32)), Tensor(np.ones([3, 2]).astype(np.int32)))], + 'skip': ['backward']}), + + # input is Tensor(bool) + ('Neg1', { + 'block': (P.Neg(), + {'exception': TypeError, 'error_keywords': ['Neg']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('Sub0', { + 'block': (P.Sub(), {'exception': TypeError, 'error_keywords': ['Sub']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('Sub1', { + 'block': (P.Sub(), {'exception': TypeError, 'error_keywords': ['Sub']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('Sub2', { + 'block': (P.Sub(), {'exception': ValueError, 'error_keywords': ['Sub']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('Mul0', { + 'block': (P.Mul(), {'exception': TypeError, 'error_keywords': ['Mul']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('Mul1', { + 'block': (P.Mul(), {'exception': TypeError, 'error_keywords': ['Mul']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('Mul2', { + 'block': (P.Mul(), {'exception': ValueError, 'error_keywords': ['Mul']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # input is Tensor(bool) + ('Square1', { + 'block': (P.Square(), + {'exception': TypeError, 'error_keywords': ['Square']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is Tensor(bool) + ('Rsqrt1', { + 'block': (P.Rsqrt(), + {'exception': TypeError, 'error_keywords': ['Rsqrt']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is Tensor(bool) + ('Sqrt1', { + 'block': (P.Sqrt(), + {'exception': TypeError, 'error_keywords': ['Sqrt']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is not Tensor + ('Reciprocal1', { + 'block': (P.Reciprocal(), + {'exception': TypeError, 'error_keywords': ['Reciprocal']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + + # input x is Tensor(bool) + ('Pow1', { + 'block': (P.Pow(), + {'exception': TypeError, 'error_keywords': ['Pow']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_)), 2.0], + 'skip': ['backward']}), + + # input is not Tensor + ('Exp1', { + 'block': (P.Exp(), + {'exception': TypeError, 'error_keywords': ['Exp']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + + # input is not Tensor + ('Log1', { + 'block': (P.Log(), + {'exception': TypeError, 'error_keywords': ['Log']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('Minimum0', { + 'block': (P.Minimum(), {'exception': TypeError, 'error_keywords': ['Minimum']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('Minimum1', { + 'block': (P.Minimum(), {'exception': TypeError, 'error_keywords': ['Minimum']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('Minimum2', { + 'block': (P.Minimum(), {'exception': ValueError, 'error_keywords': ['Minimum']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('Maximum0', { + 'block': (P.Maximum(), {'exception': TypeError, 'error_keywords': ['Maximum']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('Maximum1', { + 'block': (P.Maximum(), {'exception': TypeError, 'error_keywords': ['Maximum']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('Maximum2', { + 'block': (P.Maximum(), {'exception': ValueError, 'error_keywords': ['Maximum']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('RealDiv0', { + 'block': (P.RealDiv(), {'exception': TypeError, 'error_keywords': ['RealDiv']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('RealDiv1', { + 'block': (P.RealDiv(), {'exception': TypeError, 'error_keywords': ['RealDiv']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('RealDiv2', { + 'block': (P.RealDiv(), {'exception': ValueError, 'error_keywords': ['RealDiv']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('Div0', { + 'block': (P.Div(), {'exception': TypeError, 'error_keywords': ['Div']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('Div1', { + 'block': (P.Div(), {'exception': TypeError, 'error_keywords': ['Div']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('Div2', { + 'block': (P.Div(), {'exception': ValueError, 'error_keywords': ['Div']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('FloorDiv0', { + 'block': (P.FloorDiv(), {'exception': TypeError, 'error_keywords': ['FloorDiv']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('FloorDiv1', { + 'block': (P.FloorDiv(), {'exception': TypeError, 'error_keywords': ['FloorDiv']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('FloorDiv2', { + 'block': (P.FloorDiv(), {'exception': ValueError, 'error_keywords': ['FloorDiv']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # input x is Tensor(int32), not Tensor(float) + ('Floor1', { + 'block': (P.Floor(), + {'exception': TypeError, 'error_keywords': ['Floor']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.int32))], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('FloorMod0', { + 'block': (P.FloorMod(), {'exception': TypeError, 'error_keywords': ['FloorMod']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('FloorMod1', { + 'block': (P.FloorMod(), {'exception': TypeError, 'error_keywords': ['FloorMod']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('FFloorMod2', { + 'block': (P.FloorMod(), {'exception': ValueError, 'error_keywords': ['FloorMod']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + + # input x is Tensor(int32), not Tensor(float) + ('Acosh1', { + 'block': (P.Acosh(), + {'exception': TypeError, 'error_keywords': ['Acosh']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is not tensor + ('Equal0', { + 'block': (P.Equal(), {'exception': TypeError, 'error_keywords': ['Equal']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # type of x and y not match + ('Equal1', { + 'block': (P.Equal(), {'exception': TypeError, 'error_keywords': ['Equal']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape of x and y not match + ('Equal2', { + 'block': (P.Equal(), {'exception': ValueError, 'error_keywords': ['Equal']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))], + 'skip': ['backward']}), + + # input is not tensor + ('EqualCount0', { + 'block': (P.EqualCount(), {'exception': TypeError, 'error_keywords': ['EqualCount']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # type of x and y not match + ('EqualCount1', { + 'block': (P.EqualCount(), {'exception': TypeError, 'error_keywords': ['EqualCount']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape of x and y not match + + # input is not tensor + ('NotEqual0', { + 'block': (P.NotEqual(), {'exception': TypeError, 'error_keywords': ['NotEqual']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # type of x and y not match + ('NotEqual1', { + 'block': (P.NotEqual(), {'exception': TypeError, 'error_keywords': ['NotEqual']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape of x and y not match + ('NotEqual2', { + 'block': (P.NotEqual(), {'exception': ValueError, 'error_keywords': ['NotEqual']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))], + 'skip': ['backward']}), + + # input is not tensor + ('Greater0', { + 'block': (P.Greater(), {'exception': TypeError, 'error_keywords': ['Greater']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # type of x and y not match + ('Greater1', { + 'block': (P.Greater(), {'exception': TypeError, 'error_keywords': ['Greater']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape of x and y not match + ('Greater2', { + 'block': (P.Greater(), {'exception': ValueError, 'error_keywords': ['Greater']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))], + 'skip': ['backward']}), + + # input is not tensor + ('GreaterEqual0', { + 'block': (P.GreaterEqual(), {'exception': TypeError, 'error_keywords': ['GreaterEqual']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # type of x and y not match + ('GreaterEqual1', { + 'block': (P.GreaterEqual(), {'exception': TypeError, 'error_keywords': ['GreaterEqual']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape of x and y not match + ('GreaterEqual2', { + 'block': (P.GreaterEqual(), {'exception': ValueError, 'error_keywords': ['GreaterEqual']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))], + 'skip': ['backward']}), + + # input is not tensor + ('Less0', { + 'block': (P.Less(), {'exception': TypeError, 'error_keywords': ['Less']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # type of x and y not match + ('Less1', { + 'block': (P.Less(), {'exception': TypeError, 'error_keywords': ['Less']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape of x and y not match + ('Less2', { + 'block': (P.Less(), {'exception': ValueError, 'error_keywords': ['Less']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))], + 'skip': ['backward']}), + + # input is not tensor + ('LessEqual0', { + 'block': (P.LessEqual(), {'exception': TypeError, 'error_keywords': ['LessEqual']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # type of x and y not match + ('LessEqual1', { + 'block': (P.LessEqual(), {'exception': TypeError, 'error_keywords': ['LessEqual']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape of x and y not match + ('LessEqual2', { + 'block': (P.LessEqual(), {'exception': ValueError, 'error_keywords': ['LessEqual']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))], + 'skip': ['backward']}), + + # input x is not Tensor(bool) + ('LogicalNot1', { + 'block': (P.LogicalNot(), + {'exception': TypeError, 'error_keywords': ['LogicalNot']}), + 'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.int32))], + 'skip': ['backward']}), + + # type of x and y not match + ('LogicalAnd1', { + 'block': (P.LogicalAnd(), {'exception': TypeError, 'error_keywords': ['LogicalAnd']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.bool_))], + 'skip': ['backward']}), + # shape of x and y not match + ('LogicalAnd2', { + 'block': (P.LogicalAnd(), {'exception': ValueError, 'error_keywords': ['LogicalAnd']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_)), Tensor(np.ones([3, 2]).astype(np.bool_))], + 'skip': ['backward']}), + + # type of x and y not match + ('LogicalOr1', { + 'block': (P.LogicalOr(), {'exception': TypeError, 'error_keywords': ['LogicalOr']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.bool_))], + 'skip': ['backward']}), + # shape of x and y not match + ('LogicalOr2', { + 'block': (P.LogicalOr(), {'exception': ValueError, 'error_keywords': ['LogicalOr']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_)), Tensor(np.ones([3, 2]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is not tensor + ('NPUGetFloatStatus0', { + 'block': (P.NPUGetFloatStatus(), {'exception': TypeError, 'error_keywords': ['NPUGetFloatStatus']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is Tensor(int32), not Tensor(float32) + ('NPUGetFloatStatus1', { + 'block': (P.NPUGetFloatStatus(), {'exception': TypeError, 'error_keywords': ['NPUGetFloatStatus']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))], + 'skip': ['backward']}), + # dims is not 1 + ('NPUGetFloatStatus2', { + 'block': (P.NPUGetFloatStatus(), {'exception': ValueError, 'error_keywords': ['NPUGetFloatStatus']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape[0] is not 8 + ('NPUGetFloatStatus3', { + 'block': (P.NPUGetFloatStatus(), {'exception': ValueError, 'error_keywords': ['NPUGetFloatStatus']}), + 'desc_inputs': [Tensor(np.ones([3]).astype(np.float32))], + 'skip': ['backward']}), + + # input is not tensor + ('NPUClearFloatStatus0', { + 'block': (P.NPUClearFloatStatus(), {'exception': TypeError, 'error_keywords': ['NPUClearFloatStatus']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is Tensor(int32), not Tensor(float32) + ('NPUClearFloatStatus1', { + 'block': (P.NPUClearFloatStatus(), {'exception': TypeError, 'error_keywords': ['NPUClearFloatStatus']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))], + 'skip': ['backward']}), + # dims is not 1 + ('NPUClearFloatStatus2', { + 'block': (P.NPUClearFloatStatus(), {'exception': ValueError, 'error_keywords': ['NPUClearFloatStatus']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # shape[0] is not 8 + ('NPUClearFloatStatus3', { + 'block': (P.NPUClearFloatStatus(), {'exception': ValueError, 'error_keywords': ['NPUClearFloatStatus']}), + 'desc_inputs': [Tensor(np.ones([3]).astype(np.float32))], + 'skip': ['backward']}), + + # input is not tensor + ('Cos0', { + 'block': (P.Cos(), {'exception': TypeError, 'error_keywords': ['Cos']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is Tensor(bool) + ('Cos1', { + 'block': (P.Cos(), {'exception': TypeError, 'error_keywords': ['Cos']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is not tensor + ('ACos0', { + 'block': (P.ACos(), {'exception': TypeError, 'error_keywords': ['ACos']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is Tensor(bool) + ('ACos1', { + 'block': (P.ACos(), {'exception': TypeError, 'error_keywords': ['ACos']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is not tensor + ('Sin0', { + 'block': (P.Sin(), {'exception': TypeError, 'error_keywords': ['Sin']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is Tensor(bool) + ('Sin1', { + 'block': (P.Sin(), {'exception': TypeError, 'error_keywords': ['Sin']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is not tensor + ('NMSWithMask0', { + 'block': (P.NMSWithMask(), {'exception': TypeError, 'error_keywords': ['NMSWithMask']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is not Tensor(float16) or Tensor(float32) + ('NMSWithMask1', { + 'block': (P.NMSWithMask(), {'exception': TypeError, 'error_keywords': ['NMSWithMask']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))], + 'skip': ['backward']}), + # dims is not 2 + ('NMSWithMask2', { + 'block': (P.NMSWithMask(), {'exception': ValueError, 'error_keywords': ['NMSWithMask']}), + 'desc_inputs': [Tensor(np.ones([3, 4, 2]).astype(np.float32))], + 'skip': ['backward']}), + # shape[1] is not 5 + ('NMSWithMask3', { + 'block': (P.NMSWithMask(), {'exception': ValueError, 'error_keywords': ['NMSWithMask']}), + 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.float32))], + 'skip': ['backward']}), + + # input is not tensor + ('Abs0', { + 'block': (P.Abs(), {'exception': TypeError, 'error_keywords': ['Abs']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is Tensor(bool) + ('Abs1', { + 'block': (P.Abs(), {'exception': TypeError, 'error_keywords': ['Abs']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is not tensor + ('Sign0', { + 'block': (P.Sign(), {'exception': TypeError, 'error_keywords': ['Sign']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is Tensor(bool) + ('Sign1', { + 'block': (P.Sign(), {'exception': TypeError, 'error_keywords': ['Sign']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))], + 'skip': ['backward']}), + + # input is not tensor + ('Round0', { + 'block': (P.Round(), {'exception': TypeError, 'error_keywords': ['Round']}), + 'desc_inputs': [5.0], + 'skip': ['backward']}), + # input is Tensor(bool) + ('Round1', { + 'block': (P.Round(), {'exception': TypeError, 'error_keywords': ['Round']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))], + 'skip': ['backward']}), + + # one input is scalar, and another is Tensor(float32) + ('Atan20', { + 'block': (P.Atan2(), {'exception': TypeError, 'error_keywords': ['Atan2']}), + 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, but element types are not same + ('Atan21', { + 'block': (P.Atan2(), {'exception': TypeError, 'error_keywords': ['Atan2']}), + 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), + # input two tensors, their shapes do not match + ('Atan22', { + 'block': (P.Atan2(), {'exception': ValueError, 'error_keywords': ['Atan2']}), + 'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))], + 'skip': ['backward']}), +] + + +@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) +def test_check_exception(): + return raise_set