Add primitive name to param error message for math_ops.py

This commit is contained in:
fary86 2020-04-02 07:50:13 +08:00
parent cc0ba93d17
commit 69ed72f10d
11 changed files with 1003 additions and 129 deletions

View File

@ -15,6 +15,7 @@
"""Check parameters."""
import re
from enum import Enum
from functools import reduce
from itertools import repeat
from collections import Iterable
@ -93,8 +94,131 @@ rel_strs = {
}
class Validator:
"""validator for checking input parameters"""
@staticmethod
def check(arg_name, arg_value, value_name, value, rel=Rel.EQ, prim_name=None):
"""
Method for judging relation between two int values or list/tuple made up of ints.
This method is not suitable for judging relation between floats, since it does not consider float error.
"""
rel_fn = Rel.get_fns(rel)
if not rel_fn(arg_value, value):
rel_str = Rel.get_strs(rel).format(f'{value_name}: {value}')
msg_prefix = f'For {prim_name} the' if prim_name else "The"
raise ValueError(f'{msg_prefix} `{arg_name}` should be {rel_str}, but got {arg_value}.')
@staticmethod
def check_integer(arg_name, arg_value, value, rel, prim_name):
"""Integer value judgment."""
rel_fn = Rel.get_fns(rel)
type_mismatch = not isinstance(arg_value, int) or isinstance(arg_value, bool)
if type_mismatch or not rel_fn(arg_value, value):
rel_str = Rel.get_strs(rel).format(value)
raise ValueError(f'For {prim_name} the `{arg_name}` should be an int and must {rel_str},'
f' but got {arg_value}.')
return arg_value
@staticmethod
def check_int_range(arg_name, arg_value, lower_limit, upper_limit, rel, prim_name):
"""Method for checking whether an int value is in some range."""
rel_fn = Rel.get_fns(rel)
type_mismatch = not isinstance(arg_value, int)
if type_mismatch or not rel_fn(arg_value, lower_limit, upper_limit):
rel_str = Rel.get_strs(rel).format(lower_limit, upper_limit)
raise ValueError(f'For \'{prim_name}\' the `{arg_name}` should be an int in range {rel_str},'
f' but got {arg_value}.')
return arg_value
@staticmethod
def check_subclass(arg_name, type_, template_type, prim_name):
"""Check whether some type is sublcass of another type"""
if not isinstance(template_type, Iterable):
template_type = (template_type,)
if not any([mstype.issubclass_(type_, x) for x in template_type]):
type_str = (type(type_).__name__ if isinstance(type_, (tuple, list)) else "") + str(type_)
raise TypeError(f'For \'{prim_name}\' the type of `{arg_name}` should be subclass'
f' of {",".join((str(x) for x in template_type))}, but got {type_str}.')
@staticmethod
def check_tensor_type_same(args, valid_values, prim_name):
"""check whether the element types of input tensors are the same."""
def _check_tensor_type(arg):
arg_key, arg_val = arg
Validator.check_subclass(arg_key, arg_val, mstype.tensor, prim_name)
elem_type = arg_val.element_type()
if not elem_type in valid_values:
raise TypeError(f'For \'{prim_name}\' element type of `{arg_key}` should be in {valid_values},'
f' but `{arg_key}` is {elem_type}.')
return (arg_key, elem_type)
def _check_types_same(arg1, arg2):
arg1_name, arg1_type = arg1
arg2_name, arg2_type = arg2
if arg1_type != arg2_type:
raise TypeError(f'For \'{prim_name}\' element type of `{arg2_name}` should be same as `{arg1_name}`,'
f' but `{arg1_name}` is {arg1_type} and `{arg2_name}` is {arg2_type}.')
return arg1
elem_types = map(_check_tensor_type, args.items())
reduce(_check_types_same, elem_types)
@staticmethod
def check_scalar_or_tensor_type_same(args, valid_values, prim_name):
"""check whether the types of inputs are the same. if the input args are tensors, check their element types"""
def _check_argument_type(arg):
arg_key, arg_val = arg
if isinstance(arg_val, type(mstype.tensor)):
arg_val = arg_val.element_type()
if not arg_val in valid_values:
raise TypeError(f'For \'{prim_name}\' the `{arg_key}` should be in {valid_values},'
f' but `{arg_key}` is {arg_val}.')
return arg
def _check_types_same(arg1, arg2):
arg1_name, arg1_type = arg1
arg2_name, arg2_type = arg2
excp_flag = False
if isinstance(arg1_type, type(mstype.tensor)) and isinstance(arg2_type, type(mstype.tensor)):
arg1_type = arg1_type.element_type()
arg2_type = arg2_type.element_type()
elif not (isinstance(arg1_type, type(mstype.tensor)) or isinstance(arg2_type, type(mstype.tensor))):
pass
else:
excp_flag = True
if excp_flag or arg1_type != arg2_type:
raise TypeError(f'For \'{prim_name}\' type of `{arg2_name}` should be same as `{arg1_name}`,'
f' but `{arg1_name}` is {arg1_type} and `{arg2_name}` is {arg2_type}.')
return arg1
reduce(_check_types_same, map(_check_argument_type, args.items()))
@staticmethod
def check_value_type(arg_name, arg_value, valid_types, prim_name):
"""Check whether a values is instance of some types."""
def raise_error_msg():
"""func for raising error message when check failed"""
type_names = [t.__name__ for t in valid_types]
num_types = len(valid_types)
raise TypeError(f'For \'{prim_name}\' the type of `{arg_name}` should be '
f'{"one of " if num_types > 1 else ""}'
f'{type_names if num_types > 1 else type_names[0]}, but got {type(arg_value).__name__}.')
# Notice: bool is subclass of int, so `check_value_type('x', True, [int])` will check fail, and
# `check_value_type('x', True, [bool, int])` will check pass
if isinstance(arg_value, bool) and bool not in tuple(valid_types):
raise_error_msg()
if isinstance(arg_value, tuple(valid_types)):
return arg_value
raise_error_msg()
class ParamValidator:
"""Parameter validator."""
"""Parameter validator. NOTICE: this class will be replaced by `class Validator`"""
@staticmethod
def equal(arg_name, arg_value, cond_str, cond):

View File

@ -16,13 +16,14 @@
"""broadcast"""
def _get_broadcast_shape(x_shape, y_shape):
def _get_broadcast_shape(x_shape, y_shape, prim_name):
"""
Doing broadcast between tensor x and tensor y.
Args:
x_shape (list): The shape of tensor x.
y_shape (list): The shape of tensor y.
prim_name (str): Primitive name.
Returns:
List, the shape that broadcast between tensor x and tensor y.
@ -50,7 +51,8 @@ def _get_broadcast_shape(x_shape, y_shape):
elif x_shape[i] == y_shape[i]:
broadcast_shape_back.append(x_shape[i])
else:
raise ValueError("The x_shape {} and y_shape {} can not broadcast.".format(x_shape, y_shape))
raise ValueError("For '{}' the x_shape {} and y_shape {} can not broadcast.".format(
prim_name, x_shape, y_shape))
broadcast_shape_front = y_shape[0: y_len - length] if length == x_len else x_shape[0: x_len - length]
broadcast_shape = broadcast_shape_front + broadcast_shape_back

View File

@ -28,9 +28,16 @@ from ..._checkparam import ParamValidator as validator
from ..._checkparam import Rel
from ...common import dtype as mstype
from ...common.tensor import Tensor
from ..operations.math_ops import _check_infer_attr_reduce, _infer_shape_reduce
from ..operations.math_ops import _infer_shape_reduce
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
def _check_infer_attr_reduce(axis, keep_dims):
validator.check_type('keep_dims', keep_dims, [bool])
validator.check_type('axis', axis, [int, tuple])
if isinstance(axis, tuple):
for index, value in enumerate(axis):
validator.check_type('axis[%d]' % index, value, [int])
class ExpandDims(PrimitiveWithInfer):
"""
@ -1091,7 +1098,7 @@ class ArgMaxWithValue(PrimitiveWithInfer):
axis = self.axis
x_rank = len(x_shape)
validator.check_int_range("axis", axis, -x_rank, x_rank, Rel.INC_LEFT)
ouput_shape = _infer_shape_reduce(x_shape, self.axis, self.keep_dims)
ouput_shape = _infer_shape_reduce(x_shape, self.axis, self.keep_dims, self.prim_name())
return ouput_shape, ouput_shape
def infer_dtype(self, x_dtype):
@ -1137,7 +1144,7 @@ class ArgMinWithValue(PrimitiveWithInfer):
axis = self.axis
x_rank = len(x_shape)
validator.check_int_range("axis", axis, -x_rank, x_rank, Rel.INC_LEFT)
ouput_shape = _infer_shape_reduce(x_shape, self.axis, self.keep_dims)
ouput_shape = _infer_shape_reduce(x_shape, self.axis, self.keep_dims, self.prim_name())
return ouput_shape, ouput_shape
def infer_dtype(self, x_dtype):

View File

@ -19,7 +19,7 @@ import numpy as np
from ..._c_expression import signature_rw as sig_rw
from ..._c_expression import signature_kind as sig_kind
from ..._c_expression import signature_dtype as sig_dtype
from ..._checkparam import ParamValidator as validator
from ..._checkparam import Validator as validator
from ..._checkparam import Rel
from ...common import dtype as mstype
from ...common.tensor import Tensor
@ -27,16 +27,16 @@ from .._utils import _get_broadcast_shape
from ..primitive import PrimitiveWithInfer, prim_attr_register
def _infer_shape_reduce(x, axis, keep_dims):
def _infer_shape_reduce(x, axis, keep_dims, prim_name):
"""Common infer for reduce operator"""
def reduce_one_axis(one_axis):
validator.check_int_range('axis', one_axis, -dim, dim, Rel.INC_LEFT)
validator.check_int_range('axis', one_axis, -dim, dim, Rel.INC_LEFT, prim_name)
if one_axis < 0:
one_axis += dim
axis_reduce.add(one_axis)
validator.check_type('axis', axis, [int, tuple, list])
validator.check_value_type('axis', axis, [int, tuple, list], prim_name)
dim = len(x)
axis_reduce = set()
@ -48,7 +48,7 @@ def _infer_shape_reduce(x, axis, keep_dims):
return [1] * dim
return []
for index, one_axis in enumerate(axis):
validator.check_type('axis[%d]' % index, one_axis, [int])
validator.check_value_type('axis[%d]' % index, one_axis, [int], prim_name)
reduce_one_axis(one_axis)
out_shape = []
@ -61,14 +61,6 @@ def _infer_shape_reduce(x, axis, keep_dims):
return out_shape
def _check_infer_attr_reduce(axis, keep_dims):
validator.check_type('keep_dims', keep_dims, [bool])
validator.check_type('axis', axis, [int, tuple])
if isinstance(axis, tuple):
for index, value in enumerate(axis):
validator.check_type('axis[%d]' % index, value, [int])
class _BinaryOp(PrimitiveWithInfer):
"""
Define binary operators.
@ -82,7 +74,7 @@ class _BinaryOp(PrimitiveWithInfer):
self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
def infer_shape(self, x_shape, y_shape):
return _get_broadcast_shape(x_shape, y_shape)
return _get_broadcast_shape(x_shape, y_shape, self.prim_name())
class _MathBinaryOp(_BinaryOp):
@ -91,15 +83,13 @@ class _MathBinaryOp(_BinaryOp):
"""
@staticmethod
def do_infer_dtype(x_dtype, y_dtype, valid_dtype=mstype.number_type):
def do_infer_dtype(x_dtype, y_dtype, valid_dtype=mstype.number_type, prim_name=None):
args_type = {"x": x_dtype, "y": y_dtype}
validator.check_args_tensor(args_type)
args_dtype = {"x_dtype": x_dtype, "y_dtype": y_dtype}
validator.check_type_same(args_dtype, valid_dtype)
validator.check_tensor_type_same(args_type, valid_dtype, prim_name)
return x_dtype
def infer_dtype(self, x_dtype, y_dtype):
return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype)
return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type, self.prim_name())
class TensorAdd(_MathBinaryOp):
@ -166,7 +156,7 @@ class AssignAdd(PrimitiveWithInfer):
def infer_dtype(self, variable, value):
args = {"value": value}
validator.check_type_same(args, mstype.number_type)
validator.check_scalar_or_tensor_type_same(args, mstype.number_type, self.prim_name())
return value
@ -207,7 +197,7 @@ class AssignSub(PrimitiveWithInfer):
def infer_dtype(self, variable, value):
args = {"value": value}
validator.check_type_same(args, mstype.number_type)
validator.check_scalar_or_tensor_type_same(args, mstype.number_type, self.prim_name())
return value
@ -228,15 +218,16 @@ class _Reduce(PrimitiveWithInfer):
@prim_attr_register
def __init__(self, keep_dims=False):
"""init Reduce"""
validator.check_type('keep_dims', keep_dims, [bool])
validator.check_value_type('keep_dims', keep_dims, [bool], self.prim_name())
self.init_prim_io_names(inputs=['input_x', 'axis'], outputs=['y'])
def do_infer(self, input_x, axis, valid_dtype=mstype.number_type):
axis_v = axis['value']
input_shp = input_x['shape']
validator.check_subclass('input_x', input_x['dtype'], mstype.tensor)
validator.check_typename('input_x', input_x['dtype'], valid_dtype)
input_shp = _infer_shape_reduce(input_shp, axis_v, self.keep_dims)
args = {'input_x': input_x['dtype']}
validator.check_tensor_type_same(args, valid_dtype, self.prim_name())
input_shp = _infer_shape_reduce(input_shp, axis_v, self.keep_dims, self.prim_name())
return {'shape': input_shp,
'dtype': input_x['dtype'],
'value': None}
@ -471,16 +462,17 @@ class CumProd(PrimitiveWithInfer):
"""
@prim_attr_register
def __init__(self, exclusive=False, reverse=False):
self.exclusive = validator.check_type("exclusive", exclusive, [bool])
self.reverse = validator.check_type("reverse", reverse, [bool])
cls_name = self.prim_name()
self.exclusive = validator.check_value_type("exclusive", exclusive, [bool], cls_name)
self.reverse = validator.check_value_type("reverse", reverse, [bool], cls_name)
def infer_shape(self, x_shape, axis_shape):
return x_shape
def infer_dtype(self, x_type, axis_type):
validator.check_subclass('x_type', x_type, mstype.tensor)
validator.check_typename('x_type', x_type, mstype.number_type)
validator.check_subclass("axis_type", axis_type, mstype.int_)
cls_name = self.prim_name()
validator.check_tensor_type_same({'x': x_type}, mstype.number_type, cls_name)
validator.check_subclass("axis", axis_type, mstype.int_, cls_name)
return x_type
@ -514,8 +506,9 @@ class MatMul(PrimitiveWithInfer):
def __init__(self, transpose_a=False, transpose_b=False):
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['output'])
self.__setattr_flag__ = True
validator.check_type("transpose_a", transpose_a, [bool])
validator.check_type("transpose_b", transpose_b, [bool])
cls_name = self.prim_name()
validator.check_value_type("transpose_a", transpose_a, [bool], cls_name)
validator.check_value_type("transpose_b", transpose_b, [bool], cls_name)
def check_shape_size(self, x, y):
if len(x) != 2 or len(y) != 2:
@ -524,11 +517,11 @@ class MatMul(PrimitiveWithInfer):
def infer_shape(self, x, y):
self.check_shape_size(x, y)
cls_name = self.__class__.__name__
cls_name = self.prim_name()
# expected dimension of x, y, x:[...,a,b] y:[..., c,d], the dim size should be the same except the last two
for i in range(len(x) - 2):
if x[i] != y[i]:
raise ValueError(f'{cls_name} shape in dim[{i}] not the same, while x is {x[i]}, y is {y[i]}')
raise ValueError(f'For \'{cls_name}\' shape in dim[{i}] not the same, while x is {x[i]}, y is {y[i]}')
# validate whether last two dims satifing matrix multiply
x_last = x[-2:]
@ -537,8 +530,8 @@ class MatMul(PrimitiveWithInfer):
x_col = x_last[not self.transpose_a] # x_col = x_last[1] if (not transpose_a) else x_last[0]
y_row = y_last[self.transpose_b] # y_row = y_last[0] if (not transpose_b) else y_last[1]
if x_col != y_row:
raise ValueError(f'{cls_name} evaluator shapes of inputs can not do this operator, got {x_col} and {y_row}'
+ f' for {cls_name}, with x shape {x}(transpose_a={self.transpose_a})'
raise ValueError(f'For \'{cls_name}\' evaluator shapes of inputs can not do this operator,'
+ f' got {x_col} and {y_row}, with x shape {x}(transpose_a={self.transpose_a})'
+ f', y shape {y}(transpose_b={self.transpose_b}).')
# set attribute
self.add_prim_attr('transpose_x1', self.transpose_a)
@ -548,10 +541,8 @@ class MatMul(PrimitiveWithInfer):
return ret_dims
def infer_dtype(self, x, y):
validator.check_subclass("x", x, mstype.tensor)
validator.check_subclass("y", y, mstype.tensor)
args = {"x dtype": x, "y dtype": y}
validator.check_type_same(args, mstype.float_type + mstype.int_type)
args = {"x": x, "y": y}
validator.check_tensor_type_same(args, mstype.float_type + mstype.int_type, self.prim_name())
return x
@ -595,12 +586,13 @@ class BatchMatMul(MatMul):
def __init__(self, transpose_a=False, transpose_b=False):
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['output'])
self.__setattr_flag__ = True
validator.check_type("transpose_a", transpose_a, [bool])
validator.check_type("transpose_b", transpose_b, [bool])
cls_name = self.prim_name()
validator.check_value_type("transpose_a", transpose_a, [bool], cls_name)
validator.check_value_type("transpose_b", transpose_b, [bool], cls_name)
def check_shape_size(self, x, y):
if len(x) != len(y) or len(x) < 3:
raise ValueError('BatchMatMul input x, y should be the same dimension size and should be '
raise ValueError('For \'BatchMatMul\' input x, y should be the same dimension size and should be '
'greater or equal to 3,' + f' while x size = {len(x)}, y size= {len(y)}')
@ -632,18 +624,17 @@ class CumSum(PrimitiveWithInfer):
@prim_attr_register
def __init__(self, exclusive=False, reverse=False):
"""init cumsum"""
self.exclusive = validator.check_type('exclusive', exclusive, [bool])
self.add_prim_attr("exclusive", self.exclusive)
self.reverse = validator.check_type('reverse', reverse, [bool])
self.add_prim_attr("reverse", self.reverse)
cls_name = self.prim_name()
validator.check_value_type('exclusive', exclusive, [bool], cls_name)
validator.check_value_type('reverse', reverse, [bool], cls_name)
self.init_prim_io_names(inputs=['x', 'axis'], outputs=['y'])
def __infer__(self, x, axis):
cls_name = self.prim_name()
x_shp = x['shape']
validator.check_type('axis', axis['value'], [int])
validator.check_subclass('x', x['dtype'], mstype.tensor)
validator.check_typename('x', x['dtype'], [mstype.uint8, mstype.int8,
mstype.int32, mstype.float16, mstype.float32])
validator.check_value_type('axis', axis['value'], [int], cls_name)
valid_types = [mstype.uint8, mstype.int8, mstype.int32, mstype.float16, mstype.float32]
validator.check_tensor_type_same({'x': x['dtype']}, valid_types, cls_name)
return {'shape': x_shp,
'dtype': x['dtype'],
'value': None}
@ -684,21 +675,22 @@ class AddN(PrimitiveWithInfer):
self.init_prim_io_names(inputs=["inputs"], outputs=["sum"])
def infer_shape(self, inputs):
validator.check_integer("inputs", len(inputs), 1, Rel.GE)
cls_name = self.prim_name()
validator.check_integer("inputs", len(inputs), 1, Rel.GE, cls_name)
self.add_prim_attr('n', len(inputs))
shp0 = inputs[0]
for i, shp in enumerate(inputs):
validator.check(f"shape of inputs[{i}]", shp, 'shape of inputs[0]', shp0)
validator.check(f"shape of inputs[{i}]", shp, 'shape of inputs[0]', shp0, Rel.EQ, cls_name)
return shp0
def infer_dtype(self, inputs):
validator.check_type("inputs", inputs, [tuple, list])
validator.check_integer("inputs", len(inputs), 1, Rel.GE)
cls_name = self.prim_name()
validator.check_value_type("inputs", inputs, [tuple, list], cls_name)
validator.check_integer("inputs", len(inputs), 1, Rel.GE, cls_name)
args = {}
for i, dtype in enumerate(inputs):
validator.check_subclass(f"inputs[{i}]", dtype, mstype.tensor)
args[f"inputs[{i}]"] = dtype
validator.check_type_same(args, mstype.number_type + (mstype.bool_,))
validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), cls_name)
return inputs[0]
@ -722,8 +714,7 @@ class Neg(PrimitiveWithInfer):
return input_x
def infer_dtype(self, input_x):
validator.check_subclass("input_x", input_x, mstype.tensor)
validator.check_typename("input_x", input_x, mstype.number_type)
validator.check_tensor_type_same({"input_x": input_x}, mstype.number_type, self.prim_name())
return input_x
@ -806,8 +797,7 @@ class Square(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_type):
validator.check_subclass("x", x_type, mstype.tensor)
validator.check_typename("x_dtype", x_type, mstype.number_type)
validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.prim_name())
return x_type
@ -836,8 +826,7 @@ class Rsqrt(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_type):
validator.check_subclass("x", x_type, mstype.tensor)
validator.check_typename("x_dtype", x_type, mstype.number_type)
validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.prim_name())
return x_type
@ -866,8 +855,7 @@ class Sqrt(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_type):
validator.check_subclass("x", x_type, mstype.tensor)
validator.check_typename("x_dtype", x_type, mstype.number_type)
validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.prim_name())
return x_type
@ -897,7 +885,7 @@ class Reciprocal(PrimitiveWithInfer):
return x
def infer_dtype(self, x):
validator.check_subclass("x", x, mstype.tensor)
validator.check_subclass("x", x, mstype.tensor, self.prim_name())
return x
@ -935,8 +923,7 @@ class Pow(PrimitiveWithInfer):
return x
def infer_dtype(self, x, power):
validator.check_subclass("x", x, mstype.tensor)
validator.check_typename("power", power, mstype.number_type)
validator.check_tensor_type_same({"x": x}, mstype.number_type, self.prim_name())
return x
@ -966,7 +953,7 @@ class Exp(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_type):
validator.check_subclass("x", x_type, mstype.tensor)
validator.check_subclass("x", x_type, mstype.tensor, self.prim_name())
return x_type
@ -995,7 +982,7 @@ class Log(PrimitiveWithInfer):
return x
def infer_dtype(self, x):
validator.check_subclass("x", x, mstype.tensor)
validator.check_subclass("x", x, mstype.tensor, self.prim_name())
return x
@ -1178,8 +1165,7 @@ class Floor(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_dtype):
validator.check_subclass("x", x_dtype, mstype.tensor)
validator.check_typename("x_dtype", x_dtype, mstype.float_type)
validator.check_tensor_type_same({"x": x_dtype}, mstype.float_type, self.prim_name())
return x_dtype
@ -1234,8 +1220,7 @@ class Acosh(PrimitiveWithInfer):
return x
def infer_dtype(self, x):
validator.check_subclass("x_dtype", x, mstype.tensor)
validator.check_typename('x_dtype', x, mstype.number_type)
validator.check_tensor_type_same({'x': x}, mstype.number_type, self.prim_name())
return x
@ -1245,15 +1230,13 @@ class _LogicBinaryOp(_BinaryOp):
"""
@staticmethod
def do_infer_dtype(x_dtype, y_dtype, valid_type=mstype.number_type):
args_type = {"x": x_dtype, "y": y_dtype}
validator.check_args_tensor(args_type)
args_dtype = {"x_dtype": x_dtype, "y_dtype": y_dtype}
validator.check_type_same(args_dtype, valid_type)
def do_infer_dtype(x_dtype, y_dtype, valid_type=mstype.number_type, prim_name=None):
args_dtype = {"x": x_dtype, "y": y_dtype}
validator.check_tensor_type_same(args_dtype, valid_type, prim_name)
return mstype.tensor_type(mstype.bool_)
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype)
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, prim_name=self.prim_name())
class Equal(_LogicBinaryOp):
@ -1289,7 +1272,7 @@ class Equal(_LogicBinaryOp):
"""
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,))
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,), self.prim_name())
class EqualCount(PrimitiveWithInfer):
@ -1318,11 +1301,13 @@ class EqualCount(PrimitiveWithInfer):
"""init EqualCount"""
self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
def infer_shape(self, x_shape, w_shape):
def infer_shape(self, x_shape, y_shape):
output_shape = (1,)
return output_shape
def infer_dtype(self, x_dtype, w_dtype):
def infer_dtype(self, x_dtype, y_dtype):
args = {'x': x_dtype, 'y': y_dtype}
validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), self.prim_name())
return x_dtype
@ -1359,7 +1344,7 @@ class NotEqual(_LogicBinaryOp):
"""
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,))
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,), self.prim_name())
class Greater(_LogicBinaryOp):
@ -1495,8 +1480,7 @@ class LogicalNot(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_dtype):
validator.check_subclass("x", x_dtype, mstype.tensor)
validator.check_typename("x_dtype", x_dtype, [mstype.bool_])
validator.check_tensor_type_same({"x": x_dtype}, [mstype.bool_], self.prim_name())
return mstype.tensor_type(mstype.bool_)
@ -1526,7 +1510,7 @@ class LogicalAnd(_LogicBinaryOp):
"""
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,))
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.prim_name())
class LogicalOr(_LogicBinaryOp):
@ -1555,7 +1539,7 @@ class LogicalOr(_LogicBinaryOp):
"""
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,))
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.prim_name())
class NPUAllocFloatStatus(PrimitiveWithInfer):
@ -1616,13 +1600,13 @@ class NPUGetFloatStatus(PrimitiveWithInfer):
self.add_prim_attr("_side_effect_flag", True)
def infer_shape(self, x_shape):
validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ)
validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ)
cls_name = self.prim_name()
validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ, cls_name)
validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ, cls_name)
return [8]
def infer_dtype(self, x_dtype):
args = {"x_dtype": x_dtype}
validator.check_type_same(args, [mstype.float32])
validator.check_tensor_type_same({'x': x_dtype}, [mstype.float32], self.prim_name())
return mstype.float32
@ -1658,13 +1642,13 @@ class NPUClearFloatStatus(PrimitiveWithInfer):
self.add_prim_attr("_side_effect_flag", True)
def infer_shape(self, x_shape):
validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ)
validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ)
cls_name = self.prim_name()
validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ, cls_name)
validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ, cls_name)
return [8]
def infer_dtype(self, x_dtype):
args = {"x_dtype": x_dtype}
validator.check_type_same(args, [mstype.float32])
validator.check_tensor_type_same({'x': x_dtype}, [mstype.float32], self.prim_name())
return mstype.float32
@ -1692,8 +1676,7 @@ class Cos(PrimitiveWithInfer):
return x
def infer_dtype(self, x):
validator.check_subclass("x_dtype", x, mstype.tensor)
validator.check_typename('x_dtype', x, mstype.number_type)
validator.check_tensor_type_same({'x': x}, mstype.number_type, self.prim_name())
return x
@ -1721,8 +1704,7 @@ class ACos(PrimitiveWithInfer):
return x
def infer_dtype(self, x):
validator.check_subclass("x_dtype", x, mstype.tensor)
validator.check_typename('x_dtype', x, mstype.number_type)
validator.check_tensor_type_same({'x': x}, mstype.number_type, self.prim_name())
return x
@ -1750,8 +1732,7 @@ class Sin(PrimitiveWithInfer):
return x
def infer_dtype(self, x):
validator.check_subclass("x_dtype", x, mstype.tensor)
validator.check_typename('x_dtype', x, mstype.number_type)
validator.check_tensor_type_same({'x': x}, mstype.number_type, self.prim_name())
return x
@ -1796,19 +1777,19 @@ class NMSWithMask(PrimitiveWithInfer):
@prim_attr_register
def __init__(self, iou_threshold=0.5):
"""Init NMSWithMask"""
validator.check_type("iou_threshold", iou_threshold, [float])
validator.check_value_type("iou_threshold", iou_threshold, [float], self.prim_name())
self.init_prim_io_names(inputs=['bboxes'], outputs=['selected_boxes', 'selected_idx', 'selected_mask'])
def infer_shape(self, bboxes_shape):
validator.check_integer("bboxes rank", len(bboxes_shape), 2, Rel.EQ)
validator.check_integer("bboxes.shape()[0]", bboxes_shape[0], 0, Rel.GT)
validator.check_integer("bboxes.shape()[1]", bboxes_shape[1], 5, Rel.EQ)
cls_name = self.prim_name()
validator.check_integer("bboxes rank", len(bboxes_shape), 2, Rel.EQ, cls_name)
validator.check_integer("bboxes.shape()[0]", bboxes_shape[0], 0, Rel.GT, cls_name)
validator.check_integer("bboxes.shape()[1]", bboxes_shape[1], 5, Rel.EQ, cls_name)
num = bboxes_shape[0]
return (bboxes_shape, (num,), (num,))
def infer_dtype(self, bboxes_dtype):
validator.check_subclass("bboxes_dtype", bboxes_dtype, mstype.tensor)
validator.check_typename("bboxes_dtype", bboxes_dtype, [mstype.float16, mstype.float32])
validator.check_tensor_type_same({"bboxes": bboxes_dtype}, [mstype.float16, mstype.float32], self.prim_name())
return (bboxes_dtype, mstype.int32, mstype.bool_)
@ -1837,8 +1818,7 @@ class Abs(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_type):
validator.check_subclass("x_dtype", x_type, mstype.tensor)
validator.check_typename('x_dtype', x_type, mstype.number_type)
validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.prim_name())
return x_type
def infer_value(self, x):
@ -1880,8 +1860,7 @@ class Sign(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_dtype):
validator.check_subclass('x', x_dtype, mstype.tensor)
validator.check_typename('x_dtype', x_dtype, mstype.number_type)
validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.prim_name())
return x_dtype
@ -1910,8 +1889,7 @@ class Round(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_type):
validator.check_subclass("x_dtype", x_type, mstype.tensor)
validator.check_typename('x_dtype', x_type, mstype.number_type)
validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.prim_name())
return x_type

View File

@ -194,6 +194,9 @@ class PrimitiveWithInfer(Primitive):
Primitive.__init__(self, name)
self.set_prim_type(prim_type.py_infer_shape)
def prim_name(self):
return self.__class__.__name__
def _clone(self):
"""
Deeply clones the primitive object.

View File

@ -23,20 +23,25 @@ from ...utils import keyword
class CheckExceptionsEC(IExectorComponent):
"""
Check if the function raises the expected Exception.
Check if the function raises the expected Exception and the error message contains specified keywords if not None.
Examples:
{
'block': f,
'exception': Exception
'exception': Exception,
'error_keywords': ['TensorAdd', 'shape']
}
"""
def run_function(self, function, inputs, verification_set):
f = function[keyword.block]
args = inputs[keyword.desc_inputs]
e = function.get(keyword.exception, Exception)
error_kws = function.get(keyword.error_keywords, None)
try:
with pytest.raises(e):
with pytest.raises(e) as exec_info:
f(*args)
except:
raise Exception(f"Expect {e}, but got {sys.exc_info()[0]}")
if error_kws and any(keyword not in str(exec_info.value) for keyword in error_kws):
raise ValueError('Error message `{}` does not contain all keywords `{}`'.format(
str(exec_info.value), error_kws))

View File

@ -87,8 +87,9 @@ def get_function_config(function):
init_param_with = function.get(keyword.init_param_with, None)
split_outputs = function.get(keyword.split_outputs, True)
exception = function.get(keyword.exception, Exception)
error_keywords = function.get(keyword.error_keywords, None)
return delta, max_error, input_selector, output_selector, sampling_times, \
reduce_output, init_param_with, split_outputs, exception
reduce_output, init_param_with, split_outputs, exception, error_keywords
def get_grad_checking_options(function, inputs):
"""
@ -104,6 +105,6 @@ def get_grad_checking_options(function, inputs):
"""
f = function[keyword.block]
args = inputs[keyword.desc_inputs]
delta, max_error, input_selector, output_selector, sampling_times, reduce_output, _, _, _ = \
delta, max_error, input_selector, output_selector, sampling_times, reduce_output, _, _, _, _ = \
get_function_config(function)
return f, args, delta, max_error, input_selector, output_selector, sampling_times, reduce_output

View File

@ -54,11 +54,12 @@ def fill_block_config(ret, block_config, tid, group, desc_inputs, desc_bprop, ex
block = block_config
delta, max_error, input_selector, output_selector, \
sampling_times, reduce_output, init_param_with, split_outputs, exception = get_function_config({})
sampling_times, reduce_output, init_param_with, split_outputs, exception, error_keywords = get_function_config({})
if isinstance(block_config, tuple) and isinstance(block_config[-1], dict):
block = block_config[0]
delta, max_error, input_selector, output_selector, \
sampling_times, reduce_output, init_param_with, split_outputs, exception = get_function_config(block_config[-1])
sampling_times, reduce_output, init_param_with, \
split_outputs, exception, error_keywords = get_function_config(block_config[-1])
if block:
func_list.append({
@ -78,7 +79,8 @@ def fill_block_config(ret, block_config, tid, group, desc_inputs, desc_bprop, ex
keyword.const_first: const_first,
keyword.add_fake_input: add_fake_input,
keyword.split_outputs: split_outputs,
keyword.exception: exception
keyword.exception: exception,
keyword.error_keywords: error_keywords
})
if desc_inputs or desc_const:

View File

@ -73,5 +73,6 @@ keyword.const_first = "const_first"
keyword.add_fake_input = "add_fake_input"
keyword.fake_input_type = "fake_input_type"
keyword.exception = "exception"
keyword.error_keywords = "error_keywords"
sys.modules[__name__] = keyword

View File

@ -234,7 +234,7 @@ raise_set = [
'block': (lambda x: P.Squeeze(axis=((1.2, 1.3))), {'exception': ValueError}),
'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
('ReduceSum_Error', {
'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': ValueError}),
'block': (lambda x: P.ReduceSum(keep_dims=1), {'exception': TypeError}),
'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5]))]}),
]

View File

@ -0,0 +1,751 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test ops """
import functools
import numpy as np
from mindspore import ops
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
import mindspore.ops.composite as C
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.common.parameter import Parameter
from ..ut_filter import non_graph_engine
from mindspore.common.api import _executor
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward\
import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
class AssignAddNet(nn.Cell):
def __init__(self,):
super(AssignAddNet, self).__init__()
self.op = P.AssignAdd()
self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_add1")
def construct(self, x):
self.op(self.inputdata, x)
return self.inputdata
class AssignSubNet(nn.Cell):
def __init__(self,):
super(AssignSubNet, self).__init__()
self.op = P.AssignSub()
self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_sub1")
def construct(self, x):
self.op(self.inputdata, x)
return self.inputdata
class ReduceNet(nn.Cell):
def __init__(self, op_class, keep_dims, axis):
super(ReduceNet, self).__init__()
self.axis = axis
self.op = op_class(keep_dims=keep_dims)
def construct(self, x):
return self.op(x, self.axis)
class CumProdNet(nn.Cell):
def __init__(self):
super(CumProdNet, self).__init__()
self.op = P.CumProd()
def construct(self, x, axis):
return self.op(x, axis)
class CumSumNet(nn.Cell):
def __init__(self, axis):
super(CumSumNet, self).__init__()
self.axis = axis
self.op = P.CumSum()
def construct(self, x):
return self.op(x, self.axis)
raise_set = [
# one input is scalar, and another is Tensor(float32)
('TensorAdd0', {
'block': (P.TensorAdd(), {'exception': TypeError, 'error_keywords': ['TensorAdd']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('TensorAdd1', {
'block': (P.TensorAdd(), {'exception': TypeError, 'error_keywords': ['TensorAdd']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('TensorAdd2', {
'block': (P.TensorAdd(), {'exception': ValueError, 'error_keywords': ['TensorAdd']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# check input Tensor(bool_)
('AssignAdd', {
'block': (AssignAddNet(), {'exception': TypeError, 'error_keywords': ['AssignAdd']}),
'desc_inputs': [Tensor(np.ones([1]).astype(np.bool_), mstype.bool_)],
'skip': ['backward']}),
# check input Tensor(bool_)
('AssignSub', {
'block': (AssignSubNet(), {'exception': TypeError, 'error_keywords': ['AssignSub']}),
'desc_inputs': [Tensor(np.ones([1]).astype(np.bool_), mstype.bool_)],
'skip': ['backward']}),
# type of axis is float, not int
('ReduceMean1', {
'block': (ReduceNet(P.ReduceMean, keep_dims=True, axis=5.0),
{'exception': TypeError, 'error_keywords': ['ReduceMean']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# axis is out of range
('ReduceMean2', {
'block': (ReduceNet(P.ReduceMean, keep_dims=True, axis=5),
{'exception': ValueError, 'error_keywords': ['ReduceMean']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# type of axis is float, not int
('ReduceSum1', {
'block': (ReduceNet(P.ReduceSum, keep_dims=True, axis=5.0),
{'exception': TypeError, 'error_keywords': ['ReduceSum']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# axis is out of range
('ReduceSum2', {
'block': (ReduceNet(P.ReduceSum, keep_dims=True, axis=5),
{'exception': ValueError, 'error_keywords': ['ReduceSum']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# type of axis is float, not int
('ReduceAll1', {
'block': (ReduceNet(P.ReduceAll, keep_dims=True, axis=5.0),
{'exception': TypeError, 'error_keywords': ['ReduceAll']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool_))],
'skip': ['backward']}),
# axis is out of range
('ReduceAll2', {
'block': (ReduceNet(P.ReduceAll, keep_dims=True, axis=5),
{'exception': ValueError, 'error_keywords': ['ReduceAll']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool_))],
'skip': ['backward']}),
# type of axis is float, not int
('ReduceMax1', {
'block': (ReduceNet(P.ReduceMax, keep_dims=True, axis=5.0),
{'exception': TypeError, 'error_keywords': ['ReduceMax']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# axis is out of range
('ReduceMax2', {
'block': (ReduceNet(P.ReduceMax, keep_dims=True, axis=5),
{'exception': ValueError, 'error_keywords': ['ReduceMax']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# type of axis is float, not int
('ReduceMin1', {
'block': (ReduceNet(P.ReduceMin, keep_dims=True, axis=5.0),
{'exception': TypeError, 'error_keywords': ['ReduceMin']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# axis is out of range
('ReduceMin2', {
'block': (ReduceNet(P.ReduceMin, keep_dims=True, axis=5),
{'exception': ValueError, 'error_keywords': ['ReduceMin']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# type of axis is float, not int
('ReduceProd1', {
'block': (ReduceNet(P.ReduceProd, keep_dims=True, axis=5.0),
{'exception': TypeError, 'error_keywords': ['ReduceProd']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# axis is out of range
('ReduceProd2', {
'block': (ReduceNet(P.ReduceProd, keep_dims=True, axis=5),
{'exception': ValueError, 'error_keywords': ['ReduceProd']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32))],
'skip': ['backward']}),
# type of x is Tensor(bool)
('CumProd1', {
'block': (CumProdNet(),
{'exception': TypeError, 'error_keywords': ['CumProd']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool)), 1],
'skip': ['backward']}),
# type of axis in float, not int
('CumProd2', {
'block': (CumProdNet(),
{'exception': TypeError, 'error_keywords': ['CumProd']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.float32)), 5.0],
'skip': ['backward']}),
# type of x and y are Tensor(uint32)
('MatMul1', {
'block': (P.MatMul(),
{'exception': TypeError, 'error_keywords': ['MatMul']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.uint32)), Tensor(np.ones([3, 2]).astype(np.uint32))],
'skip': ['backward']}),
# type of x and y not match
('MatMul2', {
'block': (P.MatMul(),
{'exception': TypeError, 'error_keywords': ['MatMul']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.int32))],
'skip': ['backward']}),
# shape of x and y not match
('MatMul3', {
'block': (P.MatMul(),
{'exception': ValueError, 'error_keywords': ['MatMul']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([2, 3]).astype(np.float32))],
'skip': ['backward']}),
# dims of x and y are less than 3
('BatchMatMul1', {
'block': (P.BatchMatMul(),
{'exception': ValueError, 'error_keywords': ['BatchMatMul']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.int32)), Tensor(np.ones([3, 2]).astype(np.int32))],
'skip': ['backward']}),
# type of x is Tensor(bool)
('CumSum1', {
'block': (CumSumNet(axis=1),
{'exception': TypeError, 'error_keywords': ['CumSum']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool))],
'skip': ['backward']}),
# type of axis in float, not int
('CumSum2', {
'block': (CumSumNet(axis=1.0),
{'exception': TypeError, 'error_keywords': ['CumSum']}),
'desc_inputs': [Tensor(np.ones([2, 3, 5]).astype(np.bool))],
'skip': ['backward']}),
# intput is not tuple or list
('AddN1', {
'block': (P.AddN(),
{'exception': TypeError, 'error_keywords': ['AddN']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.uint32))],
'skip': ['backward']}),
# type not match
('AddN2', {
'block': (P.AddN(),
{'exception': TypeError, 'error_keywords': ['AddN']}),
'desc_inputs': [(Tensor(np.ones([2, 3]).astype(np.uint32)), Tensor(np.ones([3, 2]).astype(np.int32)))],
'skip': ['backward']}),
# shape not match
('AddN3', {
'block': (P.AddN(),
{'exception': ValueError, 'error_keywords': ['AddN']}),
'desc_inputs': [(Tensor(np.ones([2, 3]).astype(np.int32)), Tensor(np.ones([3, 2]).astype(np.int32)))],
'skip': ['backward']}),
# input is Tensor(bool)
('Neg1', {
'block': (P.Neg(),
{'exception': TypeError, 'error_keywords': ['Neg']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('Sub0', {
'block': (P.Sub(), {'exception': TypeError, 'error_keywords': ['Sub']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('Sub1', {
'block': (P.Sub(), {'exception': TypeError, 'error_keywords': ['Sub']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('Sub2', {
'block': (P.Sub(), {'exception': ValueError, 'error_keywords': ['Sub']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('Mul0', {
'block': (P.Mul(), {'exception': TypeError, 'error_keywords': ['Mul']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('Mul1', {
'block': (P.Mul(), {'exception': TypeError, 'error_keywords': ['Mul']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('Mul2', {
'block': (P.Mul(), {'exception': ValueError, 'error_keywords': ['Mul']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input is Tensor(bool)
('Square1', {
'block': (P.Square(),
{'exception': TypeError, 'error_keywords': ['Square']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))],
'skip': ['backward']}),
# input is Tensor(bool)
('Rsqrt1', {
'block': (P.Rsqrt(),
{'exception': TypeError, 'error_keywords': ['Rsqrt']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))],
'skip': ['backward']}),
# input is Tensor(bool)
('Sqrt1', {
'block': (P.Sqrt(),
{'exception': TypeError, 'error_keywords': ['Sqrt']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))],
'skip': ['backward']}),
# input is not Tensor
('Reciprocal1', {
'block': (P.Reciprocal(),
{'exception': TypeError, 'error_keywords': ['Reciprocal']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input x is Tensor(bool)
('Pow1', {
'block': (P.Pow(),
{'exception': TypeError, 'error_keywords': ['Pow']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_)), 2.0],
'skip': ['backward']}),
# input is not Tensor
('Exp1', {
'block': (P.Exp(),
{'exception': TypeError, 'error_keywords': ['Exp']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is not Tensor
('Log1', {
'block': (P.Log(),
{'exception': TypeError, 'error_keywords': ['Log']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('Minimum0', {
'block': (P.Minimum(), {'exception': TypeError, 'error_keywords': ['Minimum']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('Minimum1', {
'block': (P.Minimum(), {'exception': TypeError, 'error_keywords': ['Minimum']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('Minimum2', {
'block': (P.Minimum(), {'exception': ValueError, 'error_keywords': ['Minimum']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('Maximum0', {
'block': (P.Maximum(), {'exception': TypeError, 'error_keywords': ['Maximum']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('Maximum1', {
'block': (P.Maximum(), {'exception': TypeError, 'error_keywords': ['Maximum']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('Maximum2', {
'block': (P.Maximum(), {'exception': ValueError, 'error_keywords': ['Maximum']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('RealDiv0', {
'block': (P.RealDiv(), {'exception': TypeError, 'error_keywords': ['RealDiv']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('RealDiv1', {
'block': (P.RealDiv(), {'exception': TypeError, 'error_keywords': ['RealDiv']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('RealDiv2', {
'block': (P.RealDiv(), {'exception': ValueError, 'error_keywords': ['RealDiv']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('Div0', {
'block': (P.Div(), {'exception': TypeError, 'error_keywords': ['Div']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('Div1', {
'block': (P.Div(), {'exception': TypeError, 'error_keywords': ['Div']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('Div2', {
'block': (P.Div(), {'exception': ValueError, 'error_keywords': ['Div']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('FloorDiv0', {
'block': (P.FloorDiv(), {'exception': TypeError, 'error_keywords': ['FloorDiv']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('FloorDiv1', {
'block': (P.FloorDiv(), {'exception': TypeError, 'error_keywords': ['FloorDiv']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('FloorDiv2', {
'block': (P.FloorDiv(), {'exception': ValueError, 'error_keywords': ['FloorDiv']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input x is Tensor(int32), not Tensor(float)
('Floor1', {
'block': (P.Floor(),
{'exception': TypeError, 'error_keywords': ['Floor']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.int32))],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('FloorMod0', {
'block': (P.FloorMod(), {'exception': TypeError, 'error_keywords': ['FloorMod']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('FloorMod1', {
'block': (P.FloorMod(), {'exception': TypeError, 'error_keywords': ['FloorMod']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('FFloorMod2', {
'block': (P.FloorMod(), {'exception': ValueError, 'error_keywords': ['FloorMod']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input x is Tensor(int32), not Tensor(float)
('Acosh1', {
'block': (P.Acosh(),
{'exception': TypeError, 'error_keywords': ['Acosh']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.bool_))],
'skip': ['backward']}),
# input is not tensor
('Equal0', {
'block': (P.Equal(), {'exception': TypeError, 'error_keywords': ['Equal']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# type of x and y not match
('Equal1', {
'block': (P.Equal(), {'exception': TypeError, 'error_keywords': ['Equal']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape of x and y not match
('Equal2', {
'block': (P.Equal(), {'exception': ValueError, 'error_keywords': ['Equal']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))],
'skip': ['backward']}),
# input is not tensor
('EqualCount0', {
'block': (P.EqualCount(), {'exception': TypeError, 'error_keywords': ['EqualCount']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# type of x and y not match
('EqualCount1', {
'block': (P.EqualCount(), {'exception': TypeError, 'error_keywords': ['EqualCount']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape of x and y not match
# input is not tensor
('NotEqual0', {
'block': (P.NotEqual(), {'exception': TypeError, 'error_keywords': ['NotEqual']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# type of x and y not match
('NotEqual1', {
'block': (P.NotEqual(), {'exception': TypeError, 'error_keywords': ['NotEqual']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape of x and y not match
('NotEqual2', {
'block': (P.NotEqual(), {'exception': ValueError, 'error_keywords': ['NotEqual']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))],
'skip': ['backward']}),
# input is not tensor
('Greater0', {
'block': (P.Greater(), {'exception': TypeError, 'error_keywords': ['Greater']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# type of x and y not match
('Greater1', {
'block': (P.Greater(), {'exception': TypeError, 'error_keywords': ['Greater']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape of x and y not match
('Greater2', {
'block': (P.Greater(), {'exception': ValueError, 'error_keywords': ['Greater']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))],
'skip': ['backward']}),
# input is not tensor
('GreaterEqual0', {
'block': (P.GreaterEqual(), {'exception': TypeError, 'error_keywords': ['GreaterEqual']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# type of x and y not match
('GreaterEqual1', {
'block': (P.GreaterEqual(), {'exception': TypeError, 'error_keywords': ['GreaterEqual']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape of x and y not match
('GreaterEqual2', {
'block': (P.GreaterEqual(), {'exception': ValueError, 'error_keywords': ['GreaterEqual']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))],
'skip': ['backward']}),
# input is not tensor
('Less0', {
'block': (P.Less(), {'exception': TypeError, 'error_keywords': ['Less']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# type of x and y not match
('Less1', {
'block': (P.Less(), {'exception': TypeError, 'error_keywords': ['Less']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape of x and y not match
('Less2', {
'block': (P.Less(), {'exception': ValueError, 'error_keywords': ['Less']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))],
'skip': ['backward']}),
# input is not tensor
('LessEqual0', {
'block': (P.LessEqual(), {'exception': TypeError, 'error_keywords': ['LessEqual']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# type of x and y not match
('LessEqual1', {
'block': (P.LessEqual(), {'exception': TypeError, 'error_keywords': ['LessEqual']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape of x and y not match
('LessEqual2', {
'block': (P.LessEqual(), {'exception': ValueError, 'error_keywords': ['LessEqual']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32))],
'skip': ['backward']}),
# input x is not Tensor(bool)
('LogicalNot1', {
'block': (P.LogicalNot(),
{'exception': TypeError, 'error_keywords': ['LogicalNot']}),
'desc_inputs': [Tensor(np.ones([2, 3]).astype(np.int32))],
'skip': ['backward']}),
# type of x and y not match
('LogicalAnd1', {
'block': (P.LogicalAnd(), {'exception': TypeError, 'error_keywords': ['LogicalAnd']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.bool_))],
'skip': ['backward']}),
# shape of x and y not match
('LogicalAnd2', {
'block': (P.LogicalAnd(), {'exception': ValueError, 'error_keywords': ['LogicalAnd']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_)), Tensor(np.ones([3, 2]).astype(np.bool_))],
'skip': ['backward']}),
# type of x and y not match
('LogicalOr1', {
'block': (P.LogicalOr(), {'exception': TypeError, 'error_keywords': ['LogicalOr']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.bool_))],
'skip': ['backward']}),
# shape of x and y not match
('LogicalOr2', {
'block': (P.LogicalOr(), {'exception': ValueError, 'error_keywords': ['LogicalOr']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_)), Tensor(np.ones([3, 2]).astype(np.bool_))],
'skip': ['backward']}),
# input is not tensor
('NPUGetFloatStatus0', {
'block': (P.NPUGetFloatStatus(), {'exception': TypeError, 'error_keywords': ['NPUGetFloatStatus']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is Tensor(int32), not Tensor(float32)
('NPUGetFloatStatus1', {
'block': (P.NPUGetFloatStatus(), {'exception': TypeError, 'error_keywords': ['NPUGetFloatStatus']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
'skip': ['backward']}),
# dims is not 1
('NPUGetFloatStatus2', {
'block': (P.NPUGetFloatStatus(), {'exception': ValueError, 'error_keywords': ['NPUGetFloatStatus']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape[0] is not 8
('NPUGetFloatStatus3', {
'block': (P.NPUGetFloatStatus(), {'exception': ValueError, 'error_keywords': ['NPUGetFloatStatus']}),
'desc_inputs': [Tensor(np.ones([3]).astype(np.float32))],
'skip': ['backward']}),
# input is not tensor
('NPUClearFloatStatus0', {
'block': (P.NPUClearFloatStatus(), {'exception': TypeError, 'error_keywords': ['NPUClearFloatStatus']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is Tensor(int32), not Tensor(float32)
('NPUClearFloatStatus1', {
'block': (P.NPUClearFloatStatus(), {'exception': TypeError, 'error_keywords': ['NPUClearFloatStatus']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
'skip': ['backward']}),
# dims is not 1
('NPUClearFloatStatus2', {
'block': (P.NPUClearFloatStatus(), {'exception': ValueError, 'error_keywords': ['NPUClearFloatStatus']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# shape[0] is not 8
('NPUClearFloatStatus3', {
'block': (P.NPUClearFloatStatus(), {'exception': ValueError, 'error_keywords': ['NPUClearFloatStatus']}),
'desc_inputs': [Tensor(np.ones([3]).astype(np.float32))],
'skip': ['backward']}),
# input is not tensor
('Cos0', {
'block': (P.Cos(), {'exception': TypeError, 'error_keywords': ['Cos']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is Tensor(bool)
('Cos1', {
'block': (P.Cos(), {'exception': TypeError, 'error_keywords': ['Cos']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
'skip': ['backward']}),
# input is not tensor
('ACos0', {
'block': (P.ACos(), {'exception': TypeError, 'error_keywords': ['ACos']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is Tensor(bool)
('ACos1', {
'block': (P.ACos(), {'exception': TypeError, 'error_keywords': ['ACos']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
'skip': ['backward']}),
# input is not tensor
('Sin0', {
'block': (P.Sin(), {'exception': TypeError, 'error_keywords': ['Sin']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is Tensor(bool)
('Sin1', {
'block': (P.Sin(), {'exception': TypeError, 'error_keywords': ['Sin']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
'skip': ['backward']}),
# input is not tensor
('NMSWithMask0', {
'block': (P.NMSWithMask(), {'exception': TypeError, 'error_keywords': ['NMSWithMask']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is not Tensor(float16) or Tensor(float32)
('NMSWithMask1', {
'block': (P.NMSWithMask(), {'exception': TypeError, 'error_keywords': ['NMSWithMask']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
'skip': ['backward']}),
# dims is not 2
('NMSWithMask2', {
'block': (P.NMSWithMask(), {'exception': ValueError, 'error_keywords': ['NMSWithMask']}),
'desc_inputs': [Tensor(np.ones([3, 4, 2]).astype(np.float32))],
'skip': ['backward']}),
# shape[1] is not 5
('NMSWithMask3', {
'block': (P.NMSWithMask(), {'exception': ValueError, 'error_keywords': ['NMSWithMask']}),
'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.float32))],
'skip': ['backward']}),
# input is not tensor
('Abs0', {
'block': (P.Abs(), {'exception': TypeError, 'error_keywords': ['Abs']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is Tensor(bool)
('Abs1', {
'block': (P.Abs(), {'exception': TypeError, 'error_keywords': ['Abs']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
'skip': ['backward']}),
# input is not tensor
('Sign0', {
'block': (P.Sign(), {'exception': TypeError, 'error_keywords': ['Sign']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is Tensor(bool)
('Sign1', {
'block': (P.Sign(), {'exception': TypeError, 'error_keywords': ['Sign']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
'skip': ['backward']}),
# input is not tensor
('Round0', {
'block': (P.Round(), {'exception': TypeError, 'error_keywords': ['Round']}),
'desc_inputs': [5.0],
'skip': ['backward']}),
# input is Tensor(bool)
('Round1', {
'block': (P.Round(), {'exception': TypeError, 'error_keywords': ['Round']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
'skip': ['backward']}),
# one input is scalar, and another is Tensor(float32)
('Atan20', {
'block': (P.Atan2(), {'exception': TypeError, 'error_keywords': ['Atan2']}),
'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, but element types are not same
('Atan21', {
'block': (P.Atan2(), {'exception': TypeError, 'error_keywords': ['Atan2']}),
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
# input two tensors, their shapes do not match
('Atan22', {
'block': (P.Atan2(), {'exception': ValueError, 'error_keywords': ['Atan2']}),
'desc_inputs': [Tensor(np.ones([3, 5]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.float32))],
'skip': ['backward']}),
]
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
def test_check_exception():
return raise_set