forked from mindspore-Ecosystem/mindspore
!333 Add skip op to Dataset
Merge pull request !333 from jiangzhiwen/dataset/skip
This commit is contained in:
commit
40f0a4a4f4
|
@ -47,6 +47,7 @@ static std::unordered_map<uint32_t, pFunction> g_parse_op_func_ = {{kStorage, &D
|
|||
{kMap, &DEPipeline::ParseMapOp},
|
||||
{kBatch, &DEPipeline::ParseBatchOp},
|
||||
{kRepeat, &DEPipeline::ParseRepeatOp},
|
||||
{kSkip, &DEPipeline::ParseSkipOp},
|
||||
{kZip, &DEPipeline::ParseZipOp},
|
||||
{kRename, &DEPipeline::ParseRenameOp},
|
||||
{kDeviceQueue, &DEPipeline::ParseDeviceQueueOp},
|
||||
|
@ -511,6 +512,17 @@ Status DEPipeline::ParseRepeatOp(const py::dict &args, std::shared_ptr<DatasetOp
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DEPipeline::ParseSkipOp(const py::dict &args, std::shared_ptr<DatasetOp> *ptr) {
|
||||
if (args["count"].is_none()) {
|
||||
std::string err_msg = "Error: count is invalid or not set.";
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
std::shared_ptr<SkipOp> op;
|
||||
RETURN_IF_NOT_OK(SkipOp::Builder(ToInt(args["count"])).Build(&op));
|
||||
*ptr = op;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DEPipeline::ParseGeneratorOp(const py::dict &args, std::shared_ptr<DatasetOp> *ptr) {
|
||||
std::shared_ptr<GeneratorOp::Builder> builder = std::make_shared<GeneratorOp::Builder>();
|
||||
for (auto arg : args) {
|
||||
|
|
|
@ -42,6 +42,7 @@ enum OpName {
|
|||
kBatch,
|
||||
kCache,
|
||||
kRepeat,
|
||||
kSkip,
|
||||
kTake,
|
||||
kZip,
|
||||
kMap,
|
||||
|
@ -107,6 +108,8 @@ class DEPipeline {
|
|||
|
||||
Status ParseRepeatOp(const py::dict &args, std::shared_ptr<DatasetOp> *ptr);
|
||||
|
||||
Status ParseSkipOp(const py::dict &args, std::shared_ptr<DatasetOp> *ptr);
|
||||
|
||||
Status ParseBatchOp(const py::dict &args, std::shared_ptr<DatasetOp> *ptr);
|
||||
|
||||
Status ParseGeneratorOp(const py::dict &args, std::shared_ptr<DatasetOp> *ptr);
|
||||
|
|
|
@ -446,6 +446,7 @@ PYBIND11_MODULE(_c_dataengine, m) {
|
|||
.value("MINDRECORD", OpName::kMindrecord)
|
||||
.value("CACHE", OpName::kCache)
|
||||
.value("REPEAT", OpName::kRepeat)
|
||||
.value("SKIP", OpName::kSkip)
|
||||
.value("TAKE", OpName::kTake)
|
||||
.value("ZIP", OpName::kZip)
|
||||
.value("MAP", OpName::kMap)
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include "dataset/engine/datasetops/project_op.h"
|
||||
#include "dataset/engine/datasetops/rename_op.h"
|
||||
#include "dataset/engine/datasetops/repeat_op.h"
|
||||
#include "dataset/engine/datasetops/skip_op.h"
|
||||
#include "dataset/engine/datasetops/shuffle_op.h"
|
||||
#include "dataset/engine/datasetops/source/generator_op.h"
|
||||
#include "dataset/engine/datasetops/source/mindrecord_op.h"
|
||||
|
|
|
@ -11,6 +11,7 @@ add_library(engine-datasetops OBJECT
|
|||
project_op.cc
|
||||
rename_op.cc
|
||||
repeat_op.cc
|
||||
skip_op.cc
|
||||
shuffle_op.cc
|
||||
zip_op.cc
|
||||
)
|
||||
|
|
|
@ -0,0 +1,128 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <utility>
|
||||
|
||||
#include "dataset/engine/data_buffer.h"
|
||||
#include "dataset/engine/datasetops/skip_op.h"
|
||||
#include "dataset/engine/db_connector.h"
|
||||
#include "dataset/engine/execution_tree.h"
|
||||
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Builder constructor. Creates the builder object.
|
||||
SkipOp::Builder::Builder(int32_t count) : build_max_skips_(count) {}
|
||||
|
||||
Status SkipOp::Builder::SanityCheck() const {
|
||||
if (build_max_skips_ < 0) {
|
||||
std::string err_msg("Skip count must be positive integer or 0.");
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// The builder "build" method creates the final object.
|
||||
Status SkipOp::Builder::Build(std::shared_ptr<SkipOp> *ptr) {
|
||||
RETURN_IF_NOT_OK(SanityCheck());
|
||||
*ptr = std::make_shared<SkipOp>(build_max_skips_);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Constructor of the SkipOp.
|
||||
SkipOp::SkipOp(int32_t count) : PipelineOp(0), max_skips_(count), skip_count_(0) {}
|
||||
|
||||
// Destructor
|
||||
SkipOp::~SkipOp() {}
|
||||
|
||||
// A print method typically used for debugging
|
||||
void SkipOp::Print(std::ostream &out, bool show_all) const {
|
||||
// Call base class printer first
|
||||
PipelineOp::Print(out, show_all);
|
||||
|
||||
// Then display our own stuff
|
||||
out << "SkipOp:"
|
||||
<< "\nCurrent skip count: " << skip_count_ << "\nMax skip count: " << max_skips_;
|
||||
}
|
||||
|
||||
// Since the buffer may contain multi rows, this function will drop the rows
|
||||
// that need to skip in it, and then return the buffer.
|
||||
Status SkipOp::GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) {
|
||||
if (child_.empty()) {
|
||||
RETURN_STATUS_UNEXPECTED("SkipOp can't be the leaf node.");
|
||||
}
|
||||
|
||||
std::unique_ptr<DataBuffer> buf;
|
||||
// Drop first max_skips_ rows
|
||||
while (skip_count_ < max_skips_) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf, worker_id, true));
|
||||
if (buf->eoe() || buf->eof()) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Consider the rows of buffer more than 1
|
||||
TensorRow drop_row;
|
||||
int row_num = buf->NumRows();
|
||||
for (int i = 0; i < row_num; i++) {
|
||||
RETURN_IF_NOT_OK(buf->PopRow(&drop_row));
|
||||
if (++skip_count_ == max_skips_) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If buffer is none or the rows of buffer is 0,
|
||||
// then get a buffer from child.
|
||||
if (!buf || buf->NumRows() == 0) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf, worker_id, true));
|
||||
}
|
||||
|
||||
// Handling eoe and eof
|
||||
if (buf->eoe() || buf->eof()) {
|
||||
RETURN_IF_NOT_OK(EoeReceived(worker_id));
|
||||
if (state_ == OpState::kDeOpIdle) {
|
||||
*p_buffer = std::move(buf);
|
||||
return Status::OK();
|
||||
}
|
||||
}
|
||||
|
||||
*p_buffer = std::move(buf);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Base-class override for handling cases when an eoe is received.
|
||||
Status SkipOp::EoeReceived(int32_t worker_id) {
|
||||
skip_count_ = 0;
|
||||
state_ = OpState::kDeOpIdle;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Class functor operator () override.
|
||||
// Most dataset ops operate by launching a thread (see ExecutionTree).
|
||||
// However, the SkipOp is defined as a inlined operator, so it is invalid to
|
||||
// launch the functor since this op runs inlined inside another operator. The
|
||||
// function is overloaded to ensure that it is not called by mistake (it will
|
||||
// generate an error).
|
||||
Status SkipOp::operator()() { RETURN_STATUS_UNEXPECTED("Logic error. SkipOp is an inlined operator."); }
|
||||
|
||||
// Base-class override for handling cases when an eof is received.
|
||||
Status SkipOp::EofReceived(int32_t worker_id) {
|
||||
MS_LOG(INFO) << "Skip operator EOF received, do nothing now.";
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,95 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef DATASET_ENGINE_DATASETOPS_SKIP_OP_H_
|
||||
#define DATASET_ENGINE_DATASETOPS_SKIP_OP_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "dataset/engine/datasetops/pipeline_op.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class SkipOp : public PipelineOp {
|
||||
public:
|
||||
class Builder {
|
||||
public:
|
||||
// Builder constructor. Creates the builder object.
|
||||
// @note No default args
|
||||
// @param count - The number of skip to do
|
||||
// @return This is a constructor.
|
||||
explicit Builder(int32_t count);
|
||||
|
||||
// Default destructor
|
||||
~Builder() = default;
|
||||
|
||||
// The builder "build" method creates the final object.
|
||||
// @return shared_ptr to the new StorageOp object
|
||||
Status Build(std::shared_ptr<SkipOp> *);
|
||||
|
||||
private:
|
||||
int32_t build_max_skips_;
|
||||
|
||||
Status SanityCheck() const;
|
||||
};
|
||||
|
||||
// Constructor of the SkipOp.
|
||||
// @note The builder class should be used to call it
|
||||
// @param count - The number of skips to do
|
||||
explicit SkipOp(int32_t count);
|
||||
|
||||
// Destructor
|
||||
~SkipOp();
|
||||
|
||||
// A print method typically used for debugging
|
||||
// @param out - The output stream to write output to
|
||||
// @param show_all - A bool to control if you want to show all info or just a summary
|
||||
void Print(std::ostream &out, bool show_all) const override;
|
||||
|
||||
// Class functor operator () override.
|
||||
// Most dataset ops operate by launching a thread (see ExecutionTree).
|
||||
// However, the SkipOp is defined as a inlined operator, so it is invalid to launch the
|
||||
// functor since this op runs inlined inside another operator. The function is overloaded to
|
||||
// ensure that it is not called by mistake (it will generate an error).
|
||||
// @return Status - The error code return
|
||||
Status operator()() override;
|
||||
|
||||
// This function returns the buffer that is at the top of our output connector. The caller is
|
||||
// typically our parent node, when the parent is asking us to provide the next buffer of data.
|
||||
// Since SkipOp is an inlined op, getting a buffer from us will simply bounce you to get
|
||||
// a buffer from our child.
|
||||
// @param p_buffer - output pointer to the buffer that it will fetch.
|
||||
// @param worker_id - The worker id
|
||||
// @param retry_if_eoe Set this flag to true to allow calling pop() again after the first pop() returns EOE.
|
||||
// @return Status - The error code return
|
||||
Status GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) override;
|
||||
|
||||
// Base-class override for handling cases when an eoe is received.
|
||||
// @param worker_id - The worker id
|
||||
Status EoeReceived(int32_t worker_id) override;
|
||||
|
||||
// Base-class override for handling cases when an eof is received.
|
||||
// @param worker_id - The worker id
|
||||
Status EofReceived(int32_t worker_id) override;
|
||||
|
||||
private:
|
||||
int32_t max_skips_; // The number of skips that the user requested
|
||||
int32_t skip_count_; // A counter for the current number of executed skips
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // DATASET_ENGINE_DATASETOPS_SKIP_OP_H_
|
|
@ -35,7 +35,7 @@ from mindspore._c_expression import typing
|
|||
from mindspore import log as logger
|
||||
from . import samplers
|
||||
from .iterators import DictIterator, TupleIterator
|
||||
from .validators import check, check_batch, check_shuffle, check_map, check_repeat, check_zip, check_rename, \
|
||||
from .validators import check, check_batch, check_shuffle, check_map, check_repeat, check_skip, check_zip, check_rename, \
|
||||
check_project, check_imagefolderdatasetv2, check_mnist_cifar_dataset, check_manifestdataset, \
|
||||
check_tfrecorddataset, check_vocdataset, check_celebadataset, check_minddataset, check_generatordataset, \
|
||||
check_zip_dataset, check_add_column
|
||||
|
@ -423,6 +423,25 @@ class Dataset:
|
|||
return self
|
||||
return RepeatDataset(self, count)
|
||||
|
||||
@check_skip
|
||||
def skip(self, count):
|
||||
"""
|
||||
Skip the first N elements of this dataset.
|
||||
|
||||
Args:
|
||||
count (int): Number of elements the dataset should be skipped.
|
||||
|
||||
Returns:
|
||||
SkipDataset, dataset skipped.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> # data is an instance of Dataset object.
|
||||
>>> # creates a dataset which skips first 3 elements from data
|
||||
>>> data = data.skip(3)
|
||||
"""
|
||||
return SkipDataset(self, count)
|
||||
|
||||
@check_zip_dataset
|
||||
def zip(self, datasets):
|
||||
"""
|
||||
|
@ -1081,6 +1100,39 @@ class RepeatDataset(DatasetOp):
|
|||
"""
|
||||
return self.count
|
||||
|
||||
class SkipDataset(DatasetOp):
|
||||
"""
|
||||
The result of applying Skip operator to the input Dataset.
|
||||
|
||||
Args:
|
||||
datasets (tuple): A tuple of datasets to be skipped.
|
||||
count (int): Number of rows the dataset should be skipped.
|
||||
"""
|
||||
|
||||
def __init__(self, input_dataset, count):
|
||||
super().__init__()
|
||||
self.count = count
|
||||
self.input.append(input_dataset)
|
||||
input_dataset.output.append(self)
|
||||
self._input_indexs = input_dataset.input_indexs
|
||||
|
||||
def get_args(self):
|
||||
args = super().get_args()
|
||||
args["count"] = self.count
|
||||
return args
|
||||
|
||||
def get_dataset_size(self):
|
||||
"""
|
||||
Get the number of batches in an epoch.
|
||||
|
||||
Return:
|
||||
Number, number of batches.
|
||||
"""
|
||||
child_size = self.input[0].get_dataset_size()
|
||||
output_size = 0
|
||||
if self.count >= 0 and self.count < child_size:
|
||||
output_size = child_size - self.count
|
||||
return output_size
|
||||
|
||||
class ZipDataset(DatasetOp):
|
||||
"""
|
||||
|
|
|
@ -127,6 +127,8 @@ class Iterator:
|
|||
op_type = OpName.MAP
|
||||
elif isinstance(dataset, de.RepeatDataset):
|
||||
op_type = OpName.REPEAT
|
||||
elif isinstance(dataset, de.SkipDataset):
|
||||
op_type = OpName.SKIP
|
||||
elif isinstance(dataset, de.StorageDataset):
|
||||
op_type = OpName.STORAGE
|
||||
elif isinstance(dataset, de.ImageFolderDatasetV2):
|
||||
|
|
|
@ -297,6 +297,9 @@ def create_node(node):
|
|||
elif dataset_op == 'RepeatDataset':
|
||||
pyobj = de.Dataset().repeat(node.get('count'))
|
||||
|
||||
elif dataset_op == 'SkipDataset':
|
||||
pyobj = de.Dataset().skip(node.get('count'))
|
||||
|
||||
elif dataset_op == 'MapDataset':
|
||||
tensor_ops = construct_tensor_ops(node.get('operations'))
|
||||
pyobj = de.Dataset().map(node.get('input_columns'), tensor_ops, node.get('output_columns'),
|
||||
|
|
|
@ -709,6 +709,20 @@ def check_repeat(method):
|
|||
|
||||
return new_method
|
||||
|
||||
def check_skip(method):
|
||||
"""check the input arguments of skip."""
|
||||
@wraps(method)
|
||||
def new_method(*args, **kwargs):
|
||||
param_dict = make_param_dict(method, args, kwargs)
|
||||
|
||||
count = param_dict.get('count')
|
||||
check_type(count, 'count', int)
|
||||
if count < 0:
|
||||
raise ValueError("Skip count must be positive integer or 0.")
|
||||
|
||||
return method(*args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
def check_zip(method):
|
||||
"""check the input arguments of zip."""
|
||||
|
|
|
@ -41,6 +41,7 @@ SET(DE_UT_SRCS
|
|||
random_vertical_flip_op_test.cc
|
||||
rename_op_test.cc
|
||||
repeat_op_test.cc
|
||||
skip_op_test.cc
|
||||
rescale_op_test.cc
|
||||
resize_bilinear_op_test.cc
|
||||
resize_op_test.cc
|
||||
|
|
|
@ -0,0 +1,91 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "dataset/util/circular_pool.h"
|
||||
#include "dataset/core/client.h"
|
||||
#include "common/common.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
|
||||
class MindDataTestSkipOp : public UT::DatasetOpTesting {};
|
||||
|
||||
TEST_F(MindDataTestSkipOp, TestSkipOpFuntions) {
|
||||
// Start with an empty execution tree
|
||||
auto my_tree = std::make_shared<ExecutionTree>();
|
||||
|
||||
std::string dataset_path;
|
||||
dataset_path = datasets_root_path_ + "/testTFTestAllTypes/test.data";
|
||||
|
||||
std::shared_ptr<TFReaderOp> my_tfreader_op;
|
||||
TFReaderOp::Builder builder;
|
||||
builder.SetDatasetFilesList({dataset_path})
|
||||
.SetRowsPerBuffer(16)
|
||||
.SetWorkerConnectorSize(16)
|
||||
.SetNumWorkers(16);
|
||||
std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
|
||||
schema->LoadSchemaFile(datasets_root_path_ + "/testTFTestAllTypes/datasetSchema.json", {});
|
||||
builder.SetDataSchema(std::move(schema));
|
||||
Status rc = builder.Build(&my_tfreader_op); ASSERT_TRUE(rc.IsOk());
|
||||
rc = my_tree->AssociateNode(my_tfreader_op);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
||||
// SkipOp
|
||||
std::shared_ptr<SkipOp> skip_op = std::make_shared<SkipOp>(5);
|
||||
rc = my_tree->AssociateNode(skip_op);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
||||
// Set children/root layout.
|
||||
rc = skip_op->AddChild(my_tfreader_op);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
rc = my_tree->AssignRoot(skip_op);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
||||
MS_LOG(INFO) << "Launching tree and begin iteration.";
|
||||
rc = my_tree->Prepare();
|
||||
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
||||
rc = my_tree->Launch();
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
||||
// Start the loop of reading tensors from our pipeline
|
||||
DatasetIterator di(my_tree);
|
||||
TensorRow tensor_list;
|
||||
rc = di.FetchNextTensorRow(&tensor_list);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
||||
int row_count = 0;
|
||||
while (!tensor_list.empty()) {
|
||||
MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
|
||||
|
||||
// Display the tensor by calling the printer on it
|
||||
for (int i = 0; i < tensor_list.size(); i++) {
|
||||
std::ostringstream ss;
|
||||
ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
|
||||
MS_LOG(INFO) << "Tensor print: " << ss.str() << ".";
|
||||
}
|
||||
|
||||
rc = di.FetchNextTensorRow(&tensor_list);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
row_count++;
|
||||
}
|
||||
|
||||
ASSERT_EQ(row_count, 7);
|
||||
}
|
|
@ -0,0 +1,130 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
|
||||
DATA_DIR_TF2 = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||
SCHEMA_DIR_TF2 = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
||||
def test_tf_skip():
|
||||
data1 = ds.TFRecordDataset(DATA_DIR_TF2, SCHEMA_DIR_TF2, shuffle=False)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
decode_op = vision.Decode()
|
||||
resize_op = vision.Resize((resize_height, resize_width), interpolation=ds.transforms.vision.Inter.LINEAR)
|
||||
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||||
data1 = data1.map(input_columns=["image"], operations=resize_op)
|
||||
data1 = data1.skip(2)
|
||||
|
||||
num_iter = 0
|
||||
for item in data1.create_dict_iterator():
|
||||
num_iter += 1
|
||||
assert num_iter == 1
|
||||
|
||||
def generator_md():
|
||||
# Create a dataset with [0, 1, 2, 3, 4]
|
||||
for i in range(5):
|
||||
yield (np.array([i]), )
|
||||
|
||||
def test_generator_skip():
|
||||
ds1 = ds.GeneratorDataset(generator_md, ["data"])
|
||||
|
||||
# Here ds1 should be [3, 4]
|
||||
ds1 = ds1.skip(3)
|
||||
|
||||
buf = []
|
||||
for data in ds1:
|
||||
buf.append(data[0][0])
|
||||
assert len(buf) == 2
|
||||
|
||||
def test_skip_1():
|
||||
ds1 = ds.GeneratorDataset(generator_md, ["data"])
|
||||
|
||||
# Here ds1 should be []
|
||||
ds1 = ds1.skip(7)
|
||||
|
||||
buf = []
|
||||
for data in ds1:
|
||||
buf.append(data[0][0])
|
||||
assert len(buf) == 0
|
||||
|
||||
def test_skip_2():
|
||||
ds1 = ds.GeneratorDataset(generator_md, ["data"])
|
||||
|
||||
# Here ds1 should be [0, 1, 2, 3, 4]
|
||||
ds1 = ds1.skip(0)
|
||||
|
||||
buf = []
|
||||
for data in ds1:
|
||||
buf.append(data[0][0])
|
||||
assert len(buf) == 5
|
||||
|
||||
def test_skip_repeat_1():
|
||||
ds1 = ds.GeneratorDataset(generator_md, ["data"])
|
||||
|
||||
# Here ds1 should be [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
|
||||
ds1 = ds1.repeat(2)
|
||||
|
||||
# Here ds1 should be [3, 4, 0, 1, 2, 3, 4]
|
||||
ds1 = ds1.skip(3)
|
||||
|
||||
buf = []
|
||||
for data in ds1:
|
||||
buf.append(data[0][0])
|
||||
assert len(buf) == 7
|
||||
|
||||
def test_skip_repeat_2():
|
||||
ds1 = ds.GeneratorDataset(generator_md, ["data"])
|
||||
|
||||
# Here ds1 should be [3, 4]
|
||||
ds1 = ds1.skip(3)
|
||||
|
||||
# Here ds1 should be [3, 4, 3, 4]
|
||||
ds1 = ds1.repeat(2)
|
||||
|
||||
buf = []
|
||||
for data in ds1:
|
||||
buf.append(data[0][0])
|
||||
assert len(buf) == 4
|
||||
|
||||
def test_skip_repeat_3():
|
||||
ds1 = ds.GeneratorDataset(generator_md, ["data"])
|
||||
|
||||
# Here ds1 should be [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
|
||||
ds1 = ds1.repeat(2)
|
||||
|
||||
# Here ds1 should be [3, 4]
|
||||
ds1 = ds1.skip(8)
|
||||
|
||||
# Here ds1 should be [3, 4, 3, 4, 3, 4]
|
||||
ds1 = ds1.repeat(3)
|
||||
|
||||
buf = []
|
||||
for data in ds1:
|
||||
buf.append(data[0][0])
|
||||
assert len(buf) == 6
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_tf_skip()
|
||||
test_generator_skip()
|
||||
test_skip_1()
|
||||
test_skip_2()
|
||||
test_skip_repeat_1()
|
||||
test_skip_repeat_2()
|
||||
test_skip_repeat_3()
|
Loading…
Reference in New Issue