mindspore/model_zoo/official/cv/retinanet/train.py

151 lines
6.9 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Train retinanet and get checkpoint files."""
import os
import argparse
import ast
import mindspore.nn as nn
from mindspore import context, Tensor
from mindspore.communication.management import init, get_rank
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor, Callback
from mindspore.train import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.retinanet import retinanetWithLossCell, TrainingWrapper, retinanet50, resnet50
from src.config import config
from src.dataset import create_retinanet_dataset
from src.lr_schedule import get_lr
from src.init_params import init_net_param, filter_checkpoint_parameter
set_seed(1)
class Monitor(Callback):
"""
Monitor loss and time.
Args:
lr_init (numpy array): train lr
Returns:
None
Examples:
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
"""
def __init__(self, lr_init=None):
super(Monitor, self).__init__()
self.lr_init = lr_init
self.lr_init_len = len(lr_init)
def step_end(self, run_context):
cb_params = run_context.original_args()
print("lr:[{:8.6f}]".format(self.lr_init[cb_params.cur_step_num-1]), flush=True)
def main():
parser = argparse.ArgumentParser(description="retinanet training")
parser.add_argument("--distribute", type=ast.literal_eval, default=False,
help="Run distribute, default is False.")
parser.add_argument("--workers", type=int, default=24, help="Num parallel workers.")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--lr", type=float, default=0.1, help="Learning rate, default is 0.1.")
parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
parser.add_argument("--save_checkpoint_epochs", type=int, default=1, help="Save checkpoint epochs, default is 1.")
parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
help="Filter weight parameters, default is False.")
parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
help="run platform, only support Ascend.")
args_opt = parser.parse_args()
if args_opt.run_platform == "Ascend":
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
if args_opt.distribute:
if os.getenv("DEVICE_ID", "not_set").isdigit():
context.set_context(device_id=int(os.getenv("DEVICE_ID")))
init()
device_num = args_opt.device_num
rank = get_rank()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=device_num)
else:
rank = 0
device_num = 1
context.set_context(device_id=args_opt.device_id)
else:
raise ValueError("Unsupported platform.")
mindrecord_file = os.path.join(config.mindrecord_dir, "retinanet.mindrecord0")
loss_scale = float(args_opt.loss_scale)
# When create MindDataset, using the fitst mindrecord file, such as retinanet.mindrecord0.
dataset = create_retinanet_dataset(mindrecord_file, repeat_num=1,
num_parallel_workers=args_opt.workers,
batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
dataset_size = dataset.get_dataset_size()
print("Create dataset done!")
backbone = resnet50(config.num_classes)
retinanet = retinanet50(backbone, config)
net = retinanetWithLossCell(retinanet, config)
init_net_param(net)
if args_opt.pre_trained:
if args_opt.pre_trained_epoch_size <= 0:
raise KeyError("pre_trained_epoch_size must be greater than 0.")
param_dict = load_checkpoint(args_opt.pre_trained)
if args_opt.filter_weight:
filter_checkpoint_parameter(param_dict)
load_param_into_net(net, param_dict)
lr = Tensor(get_lr(global_step=config.global_step,
lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
warmup_epochs1=config.warmup_epochs1, warmup_epochs2=config.warmup_epochs2,
warmup_epochs3=config.warmup_epochs3, warmup_epochs4=config.warmup_epochs4,
warmup_epochs5=config.warmup_epochs5, total_epochs=args_opt.epoch_size,
steps_per_epoch=dataset_size))
opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
config.momentum, config.weight_decay, loss_scale)
net = TrainingWrapper(net, opt, loss_scale)
model = Model(net)
print("Start train retinanet, the first epoch will be slower because of the graph compilation.")
cb = [TimeMonitor(), LossMonitor()]
cb += [Monitor(lr_init=lr.asnumpy())]
config_ck = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs,
keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix="retinanet", directory=config.save_checkpoint_path, config=config_ck)
if args_opt.distribute:
if rank == 0:
cb += [ckpt_cb]
model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
else:
cb += [ckpt_cb]
model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
if __name__ == '__main__':
main()