forked from mindspore-Ecosystem/mindspore
71 lines
2.9 KiB
Python
71 lines
2.9 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
eval.
|
|
"""
|
|
import argparse
|
|
from mindspore import context
|
|
from mindspore import nn
|
|
from mindspore.train.model import Model
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from src.dataset import create_dataset
|
|
from src.dataset import create_dataset_cifar
|
|
from src.config import config_gpu
|
|
from src.config import config_cpu
|
|
from src.mobilenetV3 import mobilenet_v3_large
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--device_target', type=str, default="GPU", help='run device_target')
|
|
args_opt = parser.parse_args()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
config = None
|
|
if args_opt.device_target == "GPU":
|
|
config = config_gpu
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
device_target="GPU", save_graphs=False)
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path,
|
|
do_train=False,
|
|
config=config,
|
|
device_target=args_opt.device_target,
|
|
batch_size=config.batch_size)
|
|
elif args_opt.device_target == "CPU":
|
|
config = config_cpu
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
device_target="CPU", save_graphs=False)
|
|
dataset = create_dataset_cifar(dataset_path=args_opt.dataset_path,
|
|
do_train=False,
|
|
batch_size=config.batch_size)
|
|
else:
|
|
raise ValueError("Unsupported device_target.")
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
net = mobilenet_v3_large(num_classes=config.num_classes, activation="Softmax")
|
|
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
if args_opt.checkpoint_path:
|
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
|
load_param_into_net(net, param_dict)
|
|
net.set_train(False)
|
|
|
|
model = Model(net, loss_fn=loss, metrics={'acc'})
|
|
res = model.eval(dataset)
|
|
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|