mindspore/model_zoo/official/cv/FCN8s
CaoJian 9d1dc25dce FCN8s script optimize 2021-04-16 14:51:38 +08:00
..
scripts FCN8s script optimize 2021-04-16 14:51:38 +08:00
src FCN8s script optimize 2021-04-16 14:51:38 +08:00
README.md FCN8s script optimize 2021-04-16 14:51:38 +08:00
eval.py FCN8s 2021-01-14 15:30:56 +08:00
train.py FCN8s script optimize 2021-04-16 14:51:38 +08:00

README.md

Contents

FCN 介绍

FCN主要用用于图像分割领域是一种端到端的分割方法。FCN丢弃了全连接层使得其能够处理任意大小的图像且减少了模型的参数量提高了模型的分割速度。FCN在编码部分使用了VGG的结构在解码部分中使用反卷积/上采样操作恢复图像的分辨率。FCN-8s最后使用8倍的反卷积/上采样操作将输出分割图恢复到与输入图像相同大小。

[Paper]: Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

模型架构

FCN-8s使用丢弃全连接操作的VGG16作为编码部分并分别融合VGG16中第3,4,5个池化层特征最后使用stride=8的反卷积获得分割图像。

数据集

Dataset used:

PASCAL VOC 2012

SBD

环境要求

快速开始

在通过官方网站安装MindSpore之后你可以通过如下步骤开始训练以及评估

  • running on Ascend with default parameters

    # run training example
    python train.py --device_id device_id
    
    # run evaluation example with default parameters
    python eval.py --device_id device_id
    

脚本介绍

脚本以及简单代码

├── model_zoo
    ├── README.md                     // descriptions about all the models
    ├── FCN8s
        ├── README.md                 // descriptions about FCN
        ├── scripts
            ├── run_train.sh
            ├── run_standalone_train.sh
            ├── run_eval.sh
            ├── build_data.sh
        ├── src
           ├──data
               ├──build_seg_data.py       // creating dataset
               ├──dataset.py          // loading dataset
           ├──nets
               ├──FCN8s.py            // FCN-8s architecture
           ├──loss
               ├──loss.py            // loss function
           ├──utils
               ├──lr_scheduler.py            // getting learning_rateFCN-8s  
        ├── train.py                 // training script
        ├── eval.py                  //  evaluation script

脚本参数

训练以及评估的参数可以在config.py中设置

  • config for FCN8s

       # dataset
      'data_file': '/data/workspace/mindspore_dataset/FCN/FCN/dataset/MINDRECORED_NAME.mindrecord', # path and name of one mindrecord file
      'batch_size': 32,
      'crop_size': 512,
      'image_mean': [103.53, 116.28, 123.675],
      'image_std': [57.375, 57.120, 58.395],
      'min_scale': 0.5,
      'max_scale': 2.0,
      'ignore_label': 255,
      'num_classes': 21,
    
      # optimizer
      'train_epochs': 500,
      'base_lr': 0.015,
      'loss_scale': 1024.0,
    
      # model
      'model': 'FCN8s',
      'ckpt_vgg16': '',
      'ckpt_pre_trained': '',
    
      # train
      'save_steps': 330,
      'keep_checkpoint_max': 5,
      'ckpt_dir': './ckpt',
    

如需获取更多信息,请查看config.py.

生成数据步骤

训练数据

  • build mindrecord training data

    sh build_data.sh
    or
    python src/data/build_seg_data.py  --data_root=/home/sun/data/Mindspore/benchmark_RELEASE/dataset  \
                                       --data_lst=/home/sun/data/Mindspore/benchmark_RELEASE/dataset/trainaug.txt  \
                                       --dst_path=dataset/MINDRECORED_NAME.mindrecord  \
                                       --num_shards=1  \
                                       --shuffle=True
    data_root: 训练数据集的总目录包含两个子目录img和cls_pngimg目录下存放训练图像cls_png目录下存放标签mask图像
    data_lst: 存放训练样本的名称列表文档每行一个样本
    dst_path: 生成mindrecord数据的目标位置
    

训练步骤

训练

  • running on Ascend with default parameters

    python train.py --device_id device_id
    

    训练时训练过程中的epch和step以及此时的loss和精确度会呈现在终端上

    epoch: * step: **, loss is ****
    ...
    

    此模型的checkpoint会在默认路径下存储

评估步骤

评估

  • 在Ascend上使用PASCAL VOC 2012 验证集进行评估

    在使用命令运行前请检查用于评估的checkpoint的路径。请设置路径为到checkpoint的绝对路径如 "/data/workspace/mindspore_dataset/FCN/FCN/model_new/FCN8s-500_82.ckpt"。

    python eval.py
    

    以上的python命令会在终端上运行你可以在终端上查看此次评估的结果。测试集的精确度会以如下方式呈现

    mean IoU  0.6467
    

模型介绍

性能

评估性能

FCN8s on PASCAL VOC 2012

Parameters Ascend
Model Version FCN-8s
Resource Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8
uploaded Date 12/30/2020 (month/day/year)
MindSpore Version 1.1.0-alpha
Dataset PASCAL VOC 2012 and SBD
Training Parameters epoch=500, steps=330, batch_size = 32, lr=0.015
Optimizer Momentum
Loss Function Softmax Cross Entropy
outputs probability
Loss 0.038
Speed 1pc: 564.652 ms/step;
Scripts FCN script

Inference Performance

FCN8s on PASCAL VOC

Parameters Ascend
Model Version FCN-8s
Resource Ascend 910; OS Euler2.8
Uploaded Date 10/29/2020 (month/day/year)
MindSpore Version 1.1.0-alpha
Dataset PASCAL VOC 2012
batch_size 16
outputs probability
mean IoU 64.67

如何使用

教程

如果你需要在不同硬件平台如GPUAscend 910 或者 Ascend 310使用训练好的模型你可以参考这个 Link。以下是一个简单例子的步骤介绍:

  • Running on Ascend

    # Set context
    context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
    context.set_auto_parallel_context(device_num=device_num,parallel_mode=ParallelMode.DATA_PARALLEL)
    init()
    
    # Load dataset
    dataset = data_generator.SegDataset(image_mean=cfg.image_mean,
                                        image_std=cfg.image_std,
                                        data_file=cfg.data_file,
                                        batch_size=cfg.batch_size,
                                        crop_size=cfg.crop_size,
                                        max_scale=cfg.max_scale,
                                        min_scale=cfg.min_scale,
                                        ignore_label=cfg.ignore_label,
                                        num_classes=cfg.num_classes,
                                        num_readers=2,
                                        num_parallel_calls=4,
                                        shard_id=args.rank,
                                        shard_num=args.group_size)
    dataset = dataset.get_dataset(repeat=1)
    
    # Define model
    net = FCN8s(n_class=cfg.num_classes)
    loss_ = loss.SoftmaxCrossEntropyLoss(cfg.num_classes, cfg.ignore_label)
    
    # optimizer
    iters_per_epoch = dataset.get_dataset_size()
    total_train_steps = iters_per_epoch * cfg.train_epochs
    
    lr_scheduler = CosineAnnealingLR(cfg.base_lr,
                                     cfg.train_epochs,
                                     iters_per_epoch,
                                     cfg.train_epochs,
                                     warmup_epochs=0,
                                     eta_min=0)
    lr = Tensor(lr_scheduler.get_lr())
    
    # loss scale
    manager_loss_scale = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=False)
    
    optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.0001,
                            loss_scale=cfg.loss_scale)
    
    model = Model(net, loss_fn=loss_, loss_scale_manager=manager_loss_scale, optimizer=optimizer, amp_level="O3")
    
    # callback for saving ckpts
    time_cb = TimeMonitor(data_size=iters_per_epoch)
    loss_cb = LossMonitor()
    cbs = [time_cb, loss_cb]
    
    if args.rank == 0:
        config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_steps,
                                     keep_checkpoint_max=cfg.keep_checkpoint_max)
        ckpoint_cb = ModelCheckpoint(prefix=cfg.model, directory=cfg.ckpt_dir, config=config_ck)
        cbs.append(ckpoint_cb)
    
    model.train(cfg.train_epochs, dataset, callbacks=cbs)
    
    

随机事件介绍

我们在train.py中设置了随机种子

ModelZoo 主页

请查看官方网站 homepage.