forked from mindspore-Ecosystem/mindspore
184 lines
6.6 KiB
Python
184 lines
6.6 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import numpy as np
|
|
|
|
from util import save_and_check_tuple
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.c_transforms as C
|
|
from mindspore.common import dtype as mstype
|
|
|
|
DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
|
|
SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
|
GENERATE_GOLDEN = False
|
|
|
|
|
|
def test_case_project_single_column():
|
|
columns = ["col_sint32"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
data1 = data1.project(columns=columns)
|
|
|
|
filename = "project_single_column_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_case_project_multiple_columns_in_order():
|
|
columns = ["col_sint16", "col_float", "col_2d"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
data1 = data1.project(columns=columns)
|
|
|
|
filename = "project_multiple_columns_in_order_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_case_project_multiple_columns_out_of_order():
|
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
data1 = data1.project(columns=columns)
|
|
|
|
filename = "project_multiple_columns_out_of_order_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_case_project_map():
|
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
data1 = data1.project(columns=columns)
|
|
|
|
type_cast_op = C.TypeCast(mstype.int64)
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
|
|
filename = "project_map_after_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_case_map_project():
|
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
|
|
type_cast_op = C.TypeCast(mstype.int64)
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_sint64"])
|
|
|
|
data1 = data1.project(columns=columns)
|
|
|
|
filename = "project_map_before_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_case_project_between_maps():
|
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
|
|
type_cast_op = C.TypeCast(mstype.int64)
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
|
|
data1 = data1.project(columns=columns)
|
|
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_3d"])
|
|
|
|
filename = "project_between_maps_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_case_project_repeat():
|
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
data1 = data1.project(columns=columns)
|
|
|
|
repeat_count = 3
|
|
data1 = data1.repeat(repeat_count)
|
|
|
|
filename = "project_before_repeat_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_case_repeat_project():
|
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
|
|
repeat_count = 3
|
|
data1 = data1.repeat(repeat_count)
|
|
|
|
data1 = data1.project(columns=columns)
|
|
|
|
filename = "project_after_repeat_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_case_map_project_map_project():
|
|
columns = ["col_3d", "col_sint64", "col_2d"]
|
|
parameters = {"params": {'columns': columns}}
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
|
|
|
type_cast_op = C.TypeCast(mstype.int64)
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_sint64"])
|
|
|
|
data1 = data1.project(columns=columns)
|
|
|
|
data1 = data1.map(operations=type_cast_op, input_columns=["col_2d"])
|
|
|
|
data1 = data1.project(columns=columns)
|
|
|
|
filename = "project_alternate_parallel_inline_result.npz"
|
|
save_and_check_tuple(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_column_order():
|
|
"""test the output dict has maintained an insertion order."""
|
|
|
|
def gen_3_cols(num):
|
|
for i in range(num):
|
|
yield (np.array([i * 3]), np.array([i * 3 + 1]), np.array([i * 3 + 2]))
|
|
|
|
def test_config(num, col_order):
|
|
dst = ds.GeneratorDataset((lambda: gen_3_cols(num)), ["col1", "col2", "col3"]).batch(batch_size=num)
|
|
dst = dst.project(col_order)
|
|
res = dict()
|
|
for item in dst.create_dict_iterator(num_epochs=1):
|
|
res = item
|
|
return res
|
|
|
|
assert list(test_config(1, ["col3", "col2", "col1"]).keys()) == ["col3", "col2", "col1"]
|
|
assert list(test_config(2, ["col1", "col2", "col3"]).keys()) == ["col1", "col2", "col3"]
|
|
assert list(test_config(3, ["col2", "col3", "col1"]).keys()) == ["col2", "col3", "col1"]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_column_order()
|