mindspore/tests/ut/python/dataset/test_datasets_imagefolder.py

847 lines
29 KiB
Python

# Copyright 2019-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import pytest
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as vision
from mindspore import log as logger
DATA_DIR = "../data/dataset/testPK/data"
def test_imagefolder_basic():
logger.info("Test Case basic")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDataset(DATA_DIR)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_imagefolder_numsamples():
logger.info("Test Case numSamples")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDataset(DATA_DIR, num_samples=10, num_parallel_workers=2)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 10
random_sampler = ds.RandomSampler(num_samples=3, replacement=True)
data1 = ds.ImageFolderDataset(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1):
num_iter += 1
assert num_iter == 3
random_sampler = ds.RandomSampler(num_samples=3, replacement=False)
data1 = ds.ImageFolderDataset(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1):
num_iter += 1
assert num_iter == 3
def test_imagefolder_numshards():
logger.info("Test Case numShards")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDataset(DATA_DIR, num_shards=4, shard_id=3)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 11
def test_imagefolder_shardid():
logger.info("Test Case withShardID")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDataset(DATA_DIR, num_shards=4, shard_id=1)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 11
def test_imagefolder_noshuffle():
logger.info("Test Case noShuffle")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDataset(DATA_DIR, shuffle=False)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_imagefolder_extrashuffle():
logger.info("Test Case extraShuffle")
# define parameters
repeat_count = 2
# apply dataset operations
data1 = ds.ImageFolderDataset(DATA_DIR, shuffle=True)
data1 = data1.shuffle(buffer_size=5)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 88
def test_imagefolder_classindex():
logger.info("Test Case classIndex")
# define parameters
repeat_count = 1
# apply dataset operations
class_index = {"class3": 333, "class1": 111}
data1 = ds.ImageFolderDataset(DATA_DIR, class_indexing=class_index, shuffle=False)
data1 = data1.repeat(repeat_count)
golden = [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111,
333, 333, 333, 333, 333, 333, 333, 333, 333, 333, 333]
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
assert item["label"] == golden[num_iter]
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 22
def test_imagefolder_negative_classindex():
logger.info("Test Case negative classIndex")
# define parameters
repeat_count = 1
# apply dataset operations
class_index = {"class3": -333, "class1": 111}
data1 = ds.ImageFolderDataset(DATA_DIR, class_indexing=class_index, shuffle=False)
data1 = data1.repeat(repeat_count)
golden = [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111,
-333, -333, -333, -333, -333, -333, -333, -333, -333, -333, -333]
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
assert item["label"] == golden[num_iter]
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 22
def test_imagefolder_extensions():
logger.info("Test Case extensions")
# define parameters
repeat_count = 1
# apply dataset operations
ext = [".jpg", ".JPEG"]
data1 = ds.ImageFolderDataset(DATA_DIR, extensions=ext)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_imagefolder_decode():
logger.info("Test Case decode")
# define parameters
repeat_count = 1
# apply dataset operations
ext = [".jpg", ".JPEG"]
data1 = ds.ImageFolderDataset(DATA_DIR, extensions=ext, decode=True)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_sequential_sampler():
logger.info("Test Case SequentialSampler")
golden = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
# define parameters
repeat_count = 1
# apply dataset operations
sampler = ds.SequentialSampler()
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
result = []
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
result.append(item["label"])
num_iter += 1
assert num_iter == 44
logger.info("Result: {}".format(result))
assert result == golden
def test_random_sampler():
logger.info("Test Case RandomSampler")
# define parameters
repeat_count = 1
# apply dataset operations
sampler = ds.RandomSampler()
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 44
def test_distributed_sampler():
logger.info("Test Case DistributedSampler")
# define parameters
repeat_count = 1
# apply dataset operations
sampler = ds.DistributedSampler(10, 1)
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 5
def test_pk_sampler():
logger.info("Test Case PKSampler")
# define parameters
repeat_count = 1
# apply dataset operations
sampler = ds.PKSampler(3)
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 12
def test_subset_random_sampler():
logger.info("Test Case SubsetRandomSampler")
# define parameters
repeat_count = 1
# apply dataset operations
indices = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11]
sampler = ds.SubsetRandomSampler(indices)
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 12
def test_weighted_random_sampler():
logger.info("Test Case WeightedRandomSampler")
# define parameters
repeat_count = 1
# apply dataset operations
weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 1.1]
sampler = ds.WeightedRandomSampler(weights, 11)
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 11
def test_weighted_random_sampler_exception():
"""
Test error cases for WeightedRandomSampler
"""
logger.info("Test error cases for WeightedRandomSampler")
error_msg_1 = "type of weights element should be number"
with pytest.raises(TypeError, match=error_msg_1):
weights = ""
ds.WeightedRandomSampler(weights)
error_msg_2 = "type of weights element should be number"
with pytest.raises(TypeError, match=error_msg_2):
weights = (0.9, 0.8, 1.1)
ds.WeightedRandomSampler(weights)
error_msg_3 = "WeightedRandomSampler: weights vector must not be empty"
with pytest.raises(RuntimeError, match=error_msg_3):
weights = []
sampler = ds.WeightedRandomSampler(weights)
sampler.parse()
error_msg_4 = "WeightedRandomSampler: weights vector must not contain negative number, got: "
with pytest.raises(RuntimeError, match=error_msg_4):
weights = [1.0, 0.1, 0.02, 0.3, -0.4]
sampler = ds.WeightedRandomSampler(weights)
sampler.parse()
error_msg_5 = "WeightedRandomSampler: elements of weights vector must not be all zero"
with pytest.raises(RuntimeError, match=error_msg_5):
weights = [0, 0, 0, 0, 0]
sampler = ds.WeightedRandomSampler(weights)
sampler.parse()
def test_chained_sampler_01():
logger.info("Test Case Chained Sampler - Random and Sequential, with repeat")
# Create chained sampler, random and sequential
sampler = ds.RandomSampler()
child_sampler = ds.SequentialSampler()
sampler.add_child(child_sampler)
# Create ImageFolderDataset with sampler
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.repeat(count=3)
# Verify dataset size
data1_size = data1.get_dataset_size()
logger.info("dataset size is: {}".format(data1_size))
assert data1_size == 132
# Verify number of iterations
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 132
def test_chained_sampler_02():
logger.info("Test Case Chained Sampler - Random and Sequential, with batch then repeat")
# Create chained sampler, random and sequential
sampler = ds.RandomSampler()
child_sampler = ds.SequentialSampler()
sampler.add_child(child_sampler)
# Create ImageFolderDataset with sampler
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.batch(batch_size=5, drop_remainder=True)
data1 = data1.repeat(count=2)
# Verify dataset size
data1_size = data1.get_dataset_size()
logger.info("dataset size is: {}".format(data1_size))
assert data1_size == 16
# Verify number of iterations
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 16
def test_chained_sampler_03():
logger.info("Test Case Chained Sampler - Random and Sequential, with repeat then batch")
# Create chained sampler, random and sequential
sampler = ds.RandomSampler()
child_sampler = ds.SequentialSampler()
sampler.add_child(child_sampler)
# Create ImageFolderDataset with sampler
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.repeat(count=2)
data1 = data1.batch(batch_size=5, drop_remainder=False)
# Verify dataset size
data1_size = data1.get_dataset_size()
logger.info("dataset size is: {}".format(data1_size))
assert data1_size == 18
# Verify number of iterations
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 18
def test_chained_sampler_04():
logger.info("Test Case Chained Sampler - Distributed and Random, with batch then repeat")
# Create chained sampler, distributed and random
sampler = ds.DistributedSampler(num_shards=4, shard_id=3)
child_sampler = ds.RandomSampler()
sampler.add_child(child_sampler)
# Create ImageFolderDataset with sampler
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
data1 = data1.batch(batch_size=5, drop_remainder=True)
data1 = data1.repeat(count=3)
# Verify dataset size
data1_size = data1.get_dataset_size()
logger.info("dataset size is: {}".format(data1_size))
assert data1_size == 6
# Verify number of iterations
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
# Note: Each of the 4 shards has 44/4=11 samples
# Note: Number of iterations is (11/5 = 2) * 3 = 6
assert num_iter == 6
def skip_test_chained_sampler_05():
logger.info("Test Case Chained Sampler - PKSampler and WeightedRandom")
# Create chained sampler, PKSampler and WeightedRandom
sampler = ds.PKSampler(num_val=3) # Number of elements per class is 3 (and there are 4 classes)
weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 0.5]
child_sampler = ds.WeightedRandomSampler(weights, num_samples=12)
sampler.add_child(child_sampler)
# Create ImageFolderDataset with sampler
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
# Verify dataset size
data1_size = data1.get_dataset_size()
logger.info("dataset size is: {}".format(data1_size))
assert data1_size == 12
# Verify number of iterations
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
# Note: PKSampler produces 4x3=12 samples
# Note: Child WeightedRandomSampler produces 12 samples
assert num_iter == 12
def test_chained_sampler_06():
logger.info("Test Case Chained Sampler - WeightedRandom and PKSampler")
# Create chained sampler, WeightedRandom and PKSampler
weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 0.5]
sampler = ds.WeightedRandomSampler(weights=weights, num_samples=12)
child_sampler = ds.PKSampler(num_val=3) # Number of elements per class is 3 (and there are 4 classes)
sampler.add_child(child_sampler)
# Create ImageFolderDataset with sampler
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
# Verify dataset size
data1_size = data1.get_dataset_size()
logger.info("dataset size is: {}".format(data1_size))
assert data1_size == 12
# Verify number of iterations
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
# Note: WeightedRandomSampler produces 12 samples
# Note: Child PKSampler produces 12 samples
assert num_iter == 12
def test_chained_sampler_07():
logger.info("Test Case Chained Sampler - SubsetRandom and Distributed, 2 shards")
# Create chained sampler, subset random and distributed
indices = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11]
sampler = ds.SubsetRandomSampler(indices, num_samples=12)
child_sampler = ds.DistributedSampler(num_shards=2, shard_id=1)
sampler.add_child(child_sampler)
# Create ImageFolderDataset with sampler
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
# Verify dataset size
data1_size = data1.get_dataset_size()
logger.info("dataset size is: {}".format(data1_size))
assert data1_size == 12
# Verify number of iterations
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
# Note: SubsetRandomSampler produces 12 samples
# Note: Each of 2 shards has 6 samples
# FIXME: Uncomment the following assert when code issue is resolved; at runtime, number of samples is 12 not 6
# assert num_iter == 6
def skip_test_chained_sampler_08():
logger.info("Test Case Chained Sampler - SubsetRandom and Distributed, 4 shards")
# Create chained sampler, subset random and distributed
indices = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11]
sampler = ds.SubsetRandomSampler(indices, num_samples=12)
child_sampler = ds.DistributedSampler(num_shards=4, shard_id=1)
sampler.add_child(child_sampler)
# Create ImageFolderDataset with sampler
data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
# Verify dataset size
data1_size = data1.get_dataset_size()
logger.info("dataset size is: {}".format(data1_size))
assert data1_size == 3
# Verify number of iterations
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
# Note: SubsetRandomSampler returns 12 samples
# Note: Each of 4 shards has 3 samples
assert num_iter == 3
def test_imagefolder_rename():
logger.info("Test Case rename")
# define parameters
repeat_count = 1
# apply dataset operations
data1 = ds.ImageFolderDataset(DATA_DIR, num_samples=10)
data1 = data1.repeat(repeat_count)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 10
data1 = data1.rename(input_columns=["image"], output_columns="image2")
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image2"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 10
def test_imagefolder_zip():
logger.info("Test Case zip")
# define parameters
repeat_count = 2
# apply dataset operations
data1 = ds.ImageFolderDataset(DATA_DIR, num_samples=10)
data2 = ds.ImageFolderDataset(DATA_DIR, num_samples=10)
data1 = data1.repeat(repeat_count)
# rename dataset2 for no conflict
data2 = data2.rename(input_columns=["image", "label"], output_columns=["image1", "label1"])
data3 = ds.zip((data1, data2))
num_iter = 0
for item in data3.create_dict_iterator(num_epochs=1): # each data is a dictionary
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert num_iter == 10
def test_imagefolder_exception():
logger.info("Test imagefolder exception")
def exception_func(item):
raise Exception("Error occur!")
def exception_func2(image, label):
raise Exception("Error occur!")
try:
data = ds.ImageFolderDataset(DATA_DIR)
data = data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1)
for _ in data.__iter__():
pass
assert False
except RuntimeError as e:
assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
try:
data = ds.ImageFolderDataset(DATA_DIR)
data = data.map(operations=exception_func2, input_columns=["image", "label"],
output_columns=["image", "label", "label1"],
column_order=["image", "label", "label1"], num_parallel_workers=1)
for _ in data.__iter__():
pass
assert False
except RuntimeError as e:
assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
try:
data = ds.ImageFolderDataset(DATA_DIR)
data = data.map(operations=vision.Decode(), input_columns=["image"], num_parallel_workers=1)
data = data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1)
for _ in data.__iter__():
pass
assert False
except RuntimeError as e:
assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
if __name__ == '__main__':
test_imagefolder_basic()
logger.info('test_imagefolder_basic Ended.\n')
test_imagefolder_numsamples()
logger.info('test_imagefolder_numsamples Ended.\n')
test_sequential_sampler()
logger.info('test_sequential_sampler Ended.\n')
test_random_sampler()
logger.info('test_random_sampler Ended.\n')
test_distributed_sampler()
logger.info('test_distributed_sampler Ended.\n')
test_pk_sampler()
logger.info('test_pk_sampler Ended.\n')
test_subset_random_sampler()
logger.info('test_subset_random_sampler Ended.\n')
test_weighted_random_sampler()
logger.info('test_weighted_random_sampler Ended.\n')
test_weighted_random_sampler_exception()
logger.info('test_weighted_random_sampler_exception Ended.\n')
test_chained_sampler_01()
logger.info('test_chained_sampler_01 Ended.\n')
test_chained_sampler_02()
logger.info('test_chained_sampler_02 Ended.\n')
test_chained_sampler_03()
logger.info('test_chained_sampler_03 Ended.\n')
test_chained_sampler_04()
logger.info('test_chained_sampler_04 Ended.\n')
# test_chained_sampler_05()
# logger.info('test_chained_sampler_05 Ended.\n')
test_chained_sampler_06()
logger.info('test_chained_sampler_06 Ended.\n')
test_chained_sampler_07()
logger.info('test_chained_sampler_07 Ended.\n')
# test_chained_sampler_08()
# logger.info('test_chained_sampler_07 Ended.\n')
test_imagefolder_numshards()
logger.info('test_imagefolder_numshards Ended.\n')
test_imagefolder_shardid()
logger.info('test_imagefolder_shardid Ended.\n')
test_imagefolder_noshuffle()
logger.info('test_imagefolder_noshuffle Ended.\n')
test_imagefolder_extrashuffle()
logger.info('test_imagefolder_extrashuffle Ended.\n')
test_imagefolder_classindex()
logger.info('test_imagefolder_classindex Ended.\n')
test_imagefolder_negative_classindex()
logger.info('test_imagefolder_negative_classindex Ended.\n')
test_imagefolder_extensions()
logger.info('test_imagefolder_extensions Ended.\n')
test_imagefolder_decode()
logger.info('test_imagefolder_decode Ended.\n')
test_imagefolder_rename()
logger.info('test_imagefolder_rename Ended.\n')
test_imagefolder_zip()
logger.info('test_imagefolder_zip Ended.\n')
test_imagefolder_exception()
logger.info('test_imagefolder_exception Ended.\n')