forked from mindspore-Ecosystem/mindspore
71 lines
2.8 KiB
Python
71 lines
2.8 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""eval Xception."""
|
|
import argparse
|
|
from mindspore import context, nn
|
|
from mindspore.train.model import Model
|
|
from mindspore.common import set_seed
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from src.Xception import xception
|
|
from src.config import config_gpu, config_ascend
|
|
from src.dataset import create_dataset
|
|
from src.loss import CrossEntropySmooth
|
|
|
|
set_seed(1)
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
parser.add_argument('--device_target', type=str, default='GPU', help='Device target')
|
|
parser.add_argument('--device_id', type=int, default=0, help='Device id')
|
|
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
|
|
args_opt = parser.parse_args()
|
|
if args_opt.device_target == "Ascend":
|
|
config = config_ascend
|
|
elif args_opt.device_target == "GPU":
|
|
config = config_gpu
|
|
else:
|
|
raise ValueError("Unsupported device_target.")
|
|
|
|
context.set_context(device_id=args_opt.device_id)
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
|
|
|
|
# create dataset
|
|
dataset = create_dataset(args_opt.dataset_path, do_train=False, batch_size=config.batch_size, device_num=1, rank=0)
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
# define net
|
|
net = xception(class_num=config.class_num)
|
|
|
|
# load checkpoint
|
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
|
load_param_into_net(net, param_dict)
|
|
net.set_train(False)
|
|
|
|
# define loss, model
|
|
loss = CrossEntropySmooth(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
|
|
|
# define model
|
|
eval_metrics = {'Loss': nn.Loss(),
|
|
'Top_1_Acc': nn.Top1CategoricalAccuracy(),
|
|
'Top_5_Acc': nn.Top5CategoricalAccuracy()}
|
|
model = Model(net, loss_fn=loss, metrics=eval_metrics)
|
|
|
|
# eval model
|
|
res = model.eval(dataset, dataset_sink_mode=True)
|
|
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|