mindspore/tests/ut/python/parallel/test_select.py

121 lines
3.8 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, w1, w2, strategy1=None, strategy2=None):
super().__init__()
self.less = P.Less().shard(strategy1)
self.w1 = Parameter(w1, "w1")
self.w2 = Parameter(w2, "w2")
self.select = P.Select().shard(strategy2)
def construct(self, x, b):
out = self.less(x, b)
out = self.select(out, self.w1, self.w2)
return out
_x = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
_b = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_w2 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
def compile_net(net):
context.set_context(save_graphs=True)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, optimizer=opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_select_data_parallel():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((8, 1, 1), (8, 1, 1))
strategy2 = ((8, 1, 1), (8, 1, 1), (8, 1, 1))
net = Net(_w1, _w2, strategy1, strategy2)
compile_net(net)
def test_select_model_parallel():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((2, 2, 2), (2, 2, 2), (2, 2, 2))
net = Net(_w1, _w2, strategy1, strategy2)
compile_net(net)
def test_select_mirror():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 2, 2), (1, 2, 2))
strategy2 = ((1, 2, 2), (1, 2, 2), (1, 2, 2))
net = Net(_w1, _w2, strategy1, strategy2)
compile_net(net)
def test_select_auto_parallel():
context.set_auto_parallel_context(
parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net(_w1, _w2)
compile_net(net)
def test_select_strategy_error():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((8, 1, 1), (2, 2, 2), (2, 2, 2))
net = Net(_w1, _w2, strategy1, strategy2)
with pytest.raises(RuntimeError):
compile_net(net)