forked from mindspore-Ecosystem/mindspore
317 lines
12 KiB
Python
317 lines
12 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore import context
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn.cell import Cell
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train import Model
|
|
from mindspore.context import ParallelMode
|
|
from tests.dataset_mock import MindData
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
device_num = 16
|
|
device_id = 2
|
|
|
|
|
|
class StrategyModel():
|
|
onehot_strategy = ((1, device_num), (), ())
|
|
twod_strategy = ((1, device_num),)
|
|
twod_strategy_m = ((device_num, 1),)
|
|
scalar_twod_strategy = ((), (1, device_num))
|
|
twod_scalar_strategy = ((1, device_num), ())
|
|
scalar_strategy = ((),)
|
|
oned_strategy = ((1,),)
|
|
scalar_scalar_strategy = ((), ())
|
|
twod_twod_strategy = ((1, device_num), (1, device_num))
|
|
twod_twodbc_strategy = ((1, device_num), (1, 1))
|
|
twodbc_twod_strategy = ((1, 1), (device_num, 1))
|
|
|
|
|
|
class StrategyBatch():
|
|
onehot_strategy = ((device_num, 1), (), ())
|
|
twod_strategy = ((1, device_num),)
|
|
twod_strategy_m = ((device_num, 1),)
|
|
scalar_twod_strategy = ((), (1, device_num))
|
|
twod_scalar_strategy = ((1, device_num), ())
|
|
scalar_strategy = ((),)
|
|
oned_strategy = ((1,),)
|
|
scalar_scalar_strategy = ((), ())
|
|
twod_twod_strategy = ((1, device_num), (1, device_num))
|
|
twod_twodbc_strategy = ((1, device_num), (1, 1))
|
|
twodbc_twod_strategy = ((1, 1), (device_num, 1))
|
|
|
|
|
|
class Args():
|
|
a = 1
|
|
b = 2
|
|
c = 3
|
|
d = 4
|
|
e = 5
|
|
num_classes = 512
|
|
emb_size = 512
|
|
|
|
|
|
class SemiAutoOneHotNet(Cell):
|
|
def __init__(self, args, strategy):
|
|
super(SemiAutoOneHotNet, self).__init__()
|
|
self.a = args.a
|
|
self.b = args.b
|
|
self.c = args.c
|
|
self.d = args.d
|
|
self.e = args.e
|
|
self.cast = P.Cast()
|
|
self.cast.shard(strategy=strategy.twod_strategy)
|
|
self.cast1 = P.Cast()
|
|
self.cast1.shard(strategy=strategy.twod_strategy)
|
|
self.cast2 = P.Cast()
|
|
self.cast2.shard(strategy=strategy.twod_strategy)
|
|
self.cast3 = P.Cast()
|
|
self.cast3.shard(strategy=strategy.scalar_strategy)
|
|
self.cast4 = P.Cast()
|
|
self.cast4.shard(strategy=strategy.scalar_strategy)
|
|
self.a_const = Tensor(self.a, dtype=mstype.float32)
|
|
self.b_const = Tensor(self.b, dtype=mstype.float32)
|
|
self.c_const = Tensor(self.c, dtype=mstype.float32)
|
|
self.d_const = Tensor(self.d, dtype=mstype.float32)
|
|
self.e_const = Tensor(self.e, dtype=mstype.float32)
|
|
self.m_const_zero = Tensor(0, dtype=mstype.float32)
|
|
self.a_const_one = Tensor(1, dtype=mstype.float32)
|
|
self.onehot = P.OneHot()
|
|
self.onehot.shard(strategy=strategy.onehot_strategy)
|
|
self.exp = P.Exp()
|
|
self.exp.shard(strategy=strategy.twod_strategy)
|
|
self.exp2 = P.Exp()
|
|
self.exp2.shard(strategy=strategy.twod_strategy)
|
|
self.exp3 = P.Exp()
|
|
self.exp3.shard(strategy=strategy.twod_strategy)
|
|
self.mul_const = P.Mul()
|
|
self.mul_const.shard(strategy=strategy.scalar_twod_strategy)
|
|
self.mul_const2 = P.Add()
|
|
self.mul_const2.shard(strategy=strategy.scalar_twod_strategy)
|
|
self.mul_const3 = P.Sub()
|
|
self.mul_const3.shard(strategy=strategy.twod_scalar_strategy)
|
|
self.mul_const4 = P.Sub()
|
|
self.mul_const4.shard(strategy=strategy.scalar_twod_strategy)
|
|
self.mul_const5 = P.Mul()
|
|
self.mul_const5.shard(strategy=strategy.twod_scalar_strategy)
|
|
self.mul = P.Mul()
|
|
self.mul.shard(strategy=strategy.twod_twod_strategy)
|
|
self.mul2 = P.Mul()
|
|
self.mul2.shard(strategy=strategy.twod_twod_strategy)
|
|
self.mul3 = P.Add()
|
|
self.mul3.shard(strategy=strategy.twod_twod_strategy)
|
|
self.mul4 = P.Sub()
|
|
self.mul4.shard(strategy=strategy.twod_twodbc_strategy)
|
|
self.mul5 = P.RealDiv()
|
|
self.mul5.shard(strategy=strategy.twod_twodbc_strategy)
|
|
self.mul6 = P.Mul()
|
|
self.mul6.shard(strategy=strategy.twod_twod_strategy)
|
|
self.mul7 = P.Mul()
|
|
self.mul7.shard(strategy=strategy.twod_scalar_strategy)
|
|
self.mul8 = P.RealDiv()
|
|
self.mul8.shard(strategy=strategy.scalar_scalar_strategy)
|
|
self.mul9 = P.Add()
|
|
self.mul9.shard(strategy=strategy.twod_scalar_strategy)
|
|
|
|
self.reduce_max = P.ReduceMax(keep_dims=True)
|
|
self.reduce_max.shard(strategy=strategy.twod_strategy)
|
|
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
|
self.reduce_sum.shard(strategy=strategy.twod_strategy)
|
|
self.reduce_sum_2 = P.ReduceSum(keep_dims=False)
|
|
self.reduce_sum_2.shard(strategy=strategy.twod_strategy)
|
|
self.reduce_sum_3 = P.ReduceSum(keep_dims=False)
|
|
self.reduce_sum_3.shard(strategy=strategy.oned_strategy)
|
|
|
|
self.reshape = P.Reshape()
|
|
self.log = P.Log()
|
|
self.log.shard(strategy=strategy.twod_strategy)
|
|
|
|
self.on_value = Tensor(1.0, mstype.float32)
|
|
self.off_value = Tensor(0.0, mstype.float32)
|
|
self.normalize = P.L2Normalize(axis=1)
|
|
self.normalize.shard(strategy=strategy.twod_strategy_m)
|
|
self.normalize2 = P.L2Normalize(axis=1)
|
|
self.normalize2.shard(strategy=strategy.twod_strategy_m)
|
|
self.fc = P.MatMul(transpose_b=True)
|
|
self.fc.shard(strategy=strategy.twodbc_twod_strategy)
|
|
weight_shape = [args.num_classes, args.emb_size]
|
|
weight_np = np.zeros(weight_shape, np.float32)
|
|
self.weight = Parameter(Tensor(weight_np), name='model_parallel_weight')
|
|
|
|
def construct(self, input_, label):
|
|
input_n = self.normalize(input_)
|
|
w = self.normalize2(self.weight)
|
|
fc_o = self.fc(input_n, w)
|
|
fc_o_shape = F.shape(fc_o)
|
|
one_hot_float = self.onehot(label, fc_o_shape[1], self.on_value, self.off_value)
|
|
local_label = self.cast(one_hot_float, mstype.int32)
|
|
|
|
exp_o = self.exp(fc_o)
|
|
mul_const_o = self.mul_const(self.a_const, exp_o)
|
|
mul_const2_o = self.mul_const2(self.b_const, mul_const_o)
|
|
exp2_o = self.exp2(mul_const2_o)
|
|
mul_const3_o = self.mul_const3(exp2_o, self.c_const)
|
|
mul_const4_o = self.mul_const4(F.scalar_to_array(1), local_label)
|
|
mul6_o = self.mul6(self.mul(mul_const3_o, one_hot_float),
|
|
self.mul2(fc_o, self.cast2(mul_const4_o, mstype.float32)))
|
|
mul_const5_o = self.mul_const5(mul6_o, self.d_const)
|
|
|
|
max_o = self.reduce_max(mul_const5_o, -1)
|
|
mul4_o = self.mul4(mul_const5_o, max_o)
|
|
exp3_o = self.exp3(mul4_o)
|
|
sum_o = self.reduce_sum(exp3_o, -1)
|
|
reshape_o = self.reshape(sum_o, (F.shape(sum_o)[0], 1))
|
|
mul5_o = self.mul5(exp3_o, reshape_o)
|
|
log_o = self.log(self.mul9(mul5_o, self.e_const))
|
|
mul3_o = self.mul3(log_o, one_hot_float)
|
|
mul7_o = self.mul7(mul3_o, self.cast3(F.scalar_to_array(-1), mstype.float32))
|
|
sum2_o = self.reduce_sum_2(mul7_o, -1)
|
|
loss = self.mul8(self.reduce_sum_3(sum2_o, -1),
|
|
self.cast4(F.scalar_to_array(F.shape(mul_const5_o)[0]), mstype.float32))
|
|
return loss
|
|
|
|
|
|
class Dataset(MindData):
|
|
def __init__(self, predict, label, length=3, input_num=2):
|
|
super(Dataset, self).__init__(size=length)
|
|
self.predict = predict
|
|
self.label = label
|
|
self.index = 0
|
|
self.length = length
|
|
self.input_num = input_num
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.index >= self.length:
|
|
raise StopIteration
|
|
self.index += 1
|
|
if self.input_num == 2:
|
|
return (self.predict, self.label)
|
|
return (self.predict,)
|
|
|
|
def reset(self):
|
|
self.index = 0
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, b):
|
|
predict = self.network(x, b)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, b):
|
|
return grad_all(self.network)(x, b)
|
|
|
|
|
|
def bn_with_initialize(out_channels):
|
|
bn = nn.BatchNorm2d(out_channels, momentum=0.3, eps=1e-5).add_flags_recursive(fp32=True)
|
|
return bn
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
return nn.Dense(input_channels, out_channels)
|
|
|
|
|
|
class BNReshapeDenseBNNet(nn.Cell):
|
|
def __init__(self):
|
|
super(BNReshapeDenseBNNet, self).__init__()
|
|
self.batch_norm = bn_with_initialize(2)
|
|
self.reshape = P.Reshape()
|
|
self.batch_norm2 = nn.BatchNorm1d(512, affine=False)
|
|
self.fc = fc_with_initialize(2 * 32 * 32, 512)
|
|
self.loss = SemiAutoOneHotNet(args=Args(), strategy=StrategyBatch())
|
|
|
|
def construct(self, x, label):
|
|
x = self.batch_norm(x)
|
|
x = self.reshape(x, (16, 2 * 32 * 32))
|
|
x = self.fc(x)
|
|
x = self.batch_norm2(x)
|
|
loss = self.loss(x, label)
|
|
return loss
|
|
|
|
|
|
def test_bn_reshape_dense_bn_train_loss():
|
|
batch_size = 16
|
|
context.set_auto_parallel_context(device_num=device_num, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
input_ = Tensor(np.ones([batch_size, 2, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
|
|
|
net = GradWrap(NetWithLoss(BNReshapeDenseBNNet()))
|
|
net.set_auto_parallel()
|
|
|
|
net.set_train()
|
|
_executor.compile(net, input_, label)
|
|
|
|
|
|
def test_semi_one_hot_net_batch():
|
|
batch_size = 16
|
|
context.set_auto_parallel_context(device_num=device_num, global_rank=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
input_ = Tensor(np.ones([batch_size * 1, 512]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
|
|
|
net = SemiAutoOneHotNet(args=Args(), strategy=StrategyBatch())
|
|
net = GradWrap(NetWithLoss(net))
|
|
net.set_auto_parallel()
|
|
|
|
net.set_train()
|
|
_executor.compile(net, input_, label)
|
|
|
|
|
|
def test_semi_one_hot_net_model():
|
|
batch_size = 16
|
|
learning_rate = 0.1
|
|
momentum = 0.9
|
|
epoch_size = 2
|
|
|
|
predict = Tensor(np.ones([batch_size, 512]), dtype=ms.float32)
|
|
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
|
dataset = Dataset(predict, label, 2, input_num=2)
|
|
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=16)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net = SemiAutoOneHotNet(args=Args(), strategy=StrategyModel())
|
|
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
|
model = Model(net, optimizer=opt)
|
|
model.train(epoch_size, dataset, dataset_sink_mode=False)
|