forked from mindspore-Ecosystem/mindspore
80 lines
2.5 KiB
Python
80 lines
2.5 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
class NetWithLoss(nn.Cell):
|
|
def __init__(self, network):
|
|
super(NetWithLoss, self).__init__()
|
|
self.loss = VirtualLoss()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
predict = self.network(x, y, b)
|
|
return self.loss(predict)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
return grad_all(self.network)(x, y, b)
|
|
|
|
|
|
# model_parallel test
|
|
def test_l2normalize_matmul():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2, strategy3):
|
|
super().__init__()
|
|
self.norm1 = P.L2Normalize(axis=0).shard(strategy1)
|
|
self.norm2 = P.L2Normalize(axis=0).shard(strategy1)
|
|
self.mul1 = P.Mul().shard(strategy2)
|
|
self.mul2 = P.Mul().shard(strategy3)
|
|
|
|
def construct(self, x, y, b):
|
|
y = self.norm1(y)
|
|
x = self.norm2(x)
|
|
out = self.mul1(x, y)
|
|
out = self.mul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
strategy1 = ((1, 1, 4),)
|
|
strategy2 = ((1, 1, 4), (1, 1, 4))
|
|
strategy3 = ((1, 1, 8), (1, 1, 8))
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net.set_auto_parallel()
|
|
|
|
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
|
net.set_train()
|
|
_executor.compile(net, x, y, b)
|