forked from mindspore-Ecosystem/mindspore
82 lines
2.4 KiB
Python
82 lines
2.4 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train import Model
|
|
from tests.dataset_mock import MindData
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class Dataset(MindData):
|
|
def __init__(self, predict, label, length=3):
|
|
super(Dataset, self).__init__(size=length)
|
|
self.predict = predict
|
|
self.label = label
|
|
self.index = 0
|
|
self.length = length
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.index >= self.length:
|
|
raise StopIteration
|
|
self.index += 1
|
|
return self.predict, self.label
|
|
|
|
def reset(self):
|
|
self.index = 0
|
|
|
|
|
|
class CommonNet(nn.Cell):
|
|
def __init__(self):
|
|
super(CommonNet, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([256, 64]), dtype=ms.float32), name="mul_weight")
|
|
self.logicalnot = P.LogicalNot().shard(((4, 2),))
|
|
self.equal = P.Equal().shard(((4, 2), (4, 2)))
|
|
|
|
def construct(self, x, label):
|
|
x = self.equal(x, self.weight)
|
|
x = self.logicalnot(x)
|
|
return x
|
|
|
|
|
|
def common_net():
|
|
epoch_size = 1
|
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8)
|
|
predict = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
label = Tensor(np.ones([32]), dtype=ms.int32)
|
|
dataset = Dataset(predict, label, 2)
|
|
net = CommonNet()
|
|
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
model = Model(net, optimizer=optimizer)
|
|
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
|
|
|
|
|
def test_bool_grad():
|
|
common_net()
|