mindspore/tests/ut/python/exec/test_bias_add.py

55 lines
1.8 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test BiasAdd """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.common.initializer import initializer
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
class Net(nn.Cell):
"""Net definition"""
def __init__(self,
output_channels,
bias_init='zeros',
):
super(Net, self).__init__()
self.biasAdd = P.BiasAdd()
if isinstance(bias_init, Tensor):
if bias_init.ndim != 1 or bias_init.shape[0] != output_channels:
raise ValueError("bias_init shape error")
self.bias = Parameter(initializer(
bias_init, [output_channels]), name="bias")
def construct(self, input_x):
return self.biasAdd(input_x, self.bias)
@non_graph_engine
def test_compile():
bias_init = Tensor(np.ones([3]).astype(np.float32))
net = Net(3, bias_init=bias_init)
input_data = Tensor(np.ones([1, 3, 3, 3], np.float32))
# since simulator currently not support matMul
# enable it when staging function is ready
output = net(input_data)
print(output.asnumpy())