mindspore/tests/ut/cpp/ops/test_ops_pooling_grad.cc

75 lines
3.0 KiB
C++

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include <memory>
#include "common/common_test.h"
#include "ops/grad/pooling_grad.h"
#include "ir/dtype/type.h"
#include "ir/value.h"
#include "abstract/dshape.h"
#include "utils/tensor_construct_utils.h"
namespace mindspore {
namespace ops {
class TestPoolingGrad : public UT::Common {
public:
TestPoolingGrad() {}
void SetUp() {}
void TearDown() {}
};
TEST_F(TestPoolingGrad, test_ops_pooling_grad1) {
auto pooling_grad = std::make_shared<PoolingGrad>();
pooling_grad->Init(MAX_POOLING, std::vector<int64_t>{1, 1}, std::vector<int64_t>{1, 1}, VALID,
std::vector<int64_t>{1, 1, 1, 1}, FLOOR, NCHW, false);
EXPECT_EQ(pooling_grad->get_pool_mode(), MAX_POOLING);
// EXPECT_EQ(pooling_grad->get_window(), std::vector<int64_t>{1, 1});
EXPECT_EQ(pooling_grad->get_pad_mode(), VALID);
// EXPECT_EQ(pooling_grad->get_stride(), std::vector<int64_t>{1, 1});
// EXPECT_EQ(pooling_grad->get_pad_list(), std::vector<int64_t>{1, 1, 1, 1});
EXPECT_EQ(pooling_grad->get_round_mode(), FLOOR);
EXPECT_EQ(pooling_grad->get_format(), NCHW);
EXPECT_EQ(pooling_grad->get_global(), false);
auto input0 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1});
auto input1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1});
auto input2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 3});
MS_EXCEPTION_IF_NULL(input0);
MS_EXCEPTION_IF_NULL(input1);
MS_EXCEPTION_IF_NULL(input2);
auto abstract = pooling_grad->Infer({input0->ToAbstract(), input1->ToAbstract(), input2->ToAbstract()});
MS_EXCEPTION_IF_NULL(abstract);
EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
auto shape_ptr = abstract->BuildShape();
MS_EXCEPTION_IF_NULL(shape_ptr);
EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
auto shape = shape_ptr->cast<abstract::ShapePtr>();
MS_EXCEPTION_IF_NULL(shape);
auto shape_vec = shape->shape();
EXPECT_EQ(shape_vec.size(), 2);
EXPECT_EQ(shape_vec[0], 3);
EXPECT_EQ(shape_vec[1], 3);
auto type = abstract->BuildType();
MS_EXCEPTION_IF_NULL(type);
EXPECT_EQ(type->isa<TensorType>(), true);
auto tensor_type = type->cast<TensorTypePtr>();
MS_EXCEPTION_IF_NULL(tensor_type);
auto data_type = tensor_type->element();
MS_EXCEPTION_IF_NULL(data_type);
EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
}
} // namespace ops
} // namespace mindspore