mindspore/tests/ut/cpp/dataset/subset_sampler_test.cc

141 lines
3.9 KiB
C++

/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "gtest/gtest.h"
#include "minddata/dataset/include/dataset/constants.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/subset_sampler.h"
#include <vector>
#include <unordered_set>
using namespace mindspore::dataset;
class MindDataTestSubsetSampler : public UT::Common {
public:
class DummyRandomAccessOp : public RandomAccessOp {
public:
DummyRandomAccessOp(int64_t num_rows) {
num_rows_ = num_rows; // base class
};
};
};
TEST_F(MindDataTestSubsetSampler, TestAllAtOnce) {
std::vector<int64_t> in({3, 1, 4, 0, 1});
std::unordered_set<int64_t> in_set(in.begin(), in.end());
int64_t num_samples = 0;
SubsetSamplerRT sampler(num_samples, in);
DummyRandomAccessOp dummyRandomAccessOp(5);
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
TensorRow row;
std::vector<int64_t> out;
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
for (const auto &t : row) {
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
out.push_back(*it);
}
}
ASSERT_EQ(in.size(), out.size());
for (int i = 0; i < in.size(); i++) {
ASSERT_EQ(in[i], out[i]);
}
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
ASSERT_EQ(row.eoe(), true);
}
TEST_F(MindDataTestSubsetSampler, TestGetNextSample) {
int64_t total_samples = 100000 - 5;
int64_t samples_per_tensor = 10;
int64_t num_samples = 0;
std::vector<int64_t> input(total_samples, 1);
SubsetSamplerRT sampler(num_samples, input, samples_per_tensor);
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
TensorRow row;
std::vector<int64_t> out;
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
int epoch = 0;
while (!row.eoe()) {
epoch++;
for (const auto &t : row) {
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
out.push_back(*it);
}
}
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
}
ASSERT_EQ(epoch, (total_samples + samples_per_tensor - 1) / samples_per_tensor);
ASSERT_EQ(input.size(), out.size());
}
TEST_F(MindDataTestSubsetSampler, TestReset) {
std::vector<int64_t> in({0, 1, 2, 3, 4});
std::unordered_set<int64_t> in_set(in.begin(), in.end());
int64_t num_samples = 0;
SubsetSamplerRT sampler(num_samples, in);
DummyRandomAccessOp dummyRandomAccessOp(5);
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
TensorRow row;
std::vector<int64_t> out;
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
for (const auto &t : row) {
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
out.push_back(*it);
}
}
ASSERT_EQ(in.size(), out.size());
for (int i = 0; i < in.size(); i++) {
ASSERT_EQ(in[i], out[i]);
}
sampler.ResetSampler();
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
ASSERT_EQ(row.eoe(), false);
out.clear();
for (const auto &t : row) {
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
out.push_back(*it);
}
}
ASSERT_EQ(in.size(), out.size());
for (int i = 0; i < in.size(); i++) {
ASSERT_EQ(in[i], out[i]);
}
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
ASSERT_EQ(row.eoe(), true);
}