forked from mindspore-Ecosystem/mindspore
114 lines
5.6 KiB
C++
114 lines
5.6 KiB
C++
/**
|
|
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "common/common.h"
|
|
#include "gtest/gtest.h"
|
|
#include "minddata/dataset/core/client.h"
|
|
#include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
|
|
#include "minddata/dataset/engine/ir/datasetops/map_node.h"
|
|
#include "minddata/dataset/engine/opt/optional/tensor_op_fusion_pass.h"
|
|
#include "minddata/dataset/engine/opt/post/auto_worker_pass.h"
|
|
#include "minddata/dataset/include/dataset/transforms.h"
|
|
#include "minddata/dataset/include/dataset/vision.h"
|
|
#include "minddata/dataset/include/dataset/vision_lite.h"
|
|
#include "minddata/dataset/kernels/ir/data/transforms_ir.h"
|
|
#include "minddata/dataset/kernels/ir/vision/decode_ir.h"
|
|
#include "minddata/dataset/kernels/ir/vision/random_crop_decode_resize_ir.h"
|
|
#include "minddata/dataset/kernels/ir/vision/random_resized_crop_ir.h"
|
|
|
|
using namespace mindspore::dataset;
|
|
using mindspore::LogStream;
|
|
using mindspore::MsLogLevel::INFO;
|
|
|
|
class MindDataTestOptimizationPass : public UT::DatasetOpTesting {};
|
|
|
|
TEST_F(MindDataTestOptimizationPass, MindDataTestAutoWorkerPass) {
|
|
MS_LOG(INFO) << "Doing MindDataTestOptimizationPass-MindDataTestAutoWorkerPass.";
|
|
|
|
std::shared_ptr<SchemaObj> schema = std::make_shared<SchemaObj>();
|
|
ASSERT_OK(schema->add_column("label", "uint32", {}));
|
|
std::shared_ptr<Dataset> map_leaf = ImageFolder("dir")->SetNumWorkers(0);
|
|
std::shared_ptr<Dataset> nonmap_leaf = RandomData(44, schema)->SetNumWorkers(0);
|
|
std::shared_ptr<Dataset> batch = Zip({map_leaf, nonmap_leaf})->Batch(1)->SetNumWorkers(0);
|
|
std::shared_ptr<Dataset> map = batch->Map({std::shared_ptr<TensorTransform>()})->SetNumWorkers(0);
|
|
// {ImageFolder, RandomData} -> zip -> batch
|
|
EXPECT_EQ(map_leaf->IRNode()->num_workers(), 0);
|
|
EXPECT_EQ(nonmap_leaf->IRNode()->num_workers(), 0);
|
|
EXPECT_EQ(batch->IRNode()->num_workers(), 0);
|
|
EXPECT_EQ(map->IRNode()->num_workers(), 0);
|
|
|
|
std::unique_ptr<IRPass> pass = std::make_unique<AutoWorkerPass>();
|
|
bool m = false;
|
|
ASSERT_OK(pass->Run(map->IRNode(), &m));
|
|
|
|
// checking that after this pass, num_workers are set correctly (aka a positive number)
|
|
// It is hard to test a exact value because num_threads are different for different machine
|
|
// however, this will for sure succeed bc regardless of the total threads on cpu, this would always be >= 1
|
|
EXPECT_NE(map_leaf->IRNode()->num_workers(), 0);
|
|
EXPECT_NE(nonmap_leaf->IRNode()->num_workers(), 0);
|
|
EXPECT_NE(batch->IRNode()->num_workers(), 0);
|
|
EXPECT_NE(map->IRNode()->num_workers(), 0);
|
|
MS_LOG(DEBUG) << map_leaf->IRNode()->Name() << ": num_worker=" << map_leaf->IRNode()->num_workers();
|
|
MS_LOG(DEBUG) << nonmap_leaf->IRNode()->Name() << ": num_worker=" << nonmap_leaf->IRNode()->num_workers();
|
|
MS_LOG(DEBUG) << batch->IRNode()->Name() << ": num_worker=" << batch->IRNode()->num_workers();
|
|
MS_LOG(DEBUG) << map->IRNode()->Name() << ": num_worker=" << map->IRNode()->num_workers();
|
|
}
|
|
|
|
TEST_F(MindDataTestOptimizationPass, MindDataTestTensorFusionPass) {
|
|
MS_LOG(INFO) << "Doing MindDataTestOptimizationPass-MindDataTestTensorFusionPass.";
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data/";
|
|
auto decode_op = vision::Decode();
|
|
auto random_resized_crop_op = vision::RandomResizedCrop({100});
|
|
std::shared_ptr<Dataset> root = ImageFolder(folder_path, false)->Map({decode_op, random_resized_crop_op}, {"image"});
|
|
|
|
TensorOpFusionPass fusion_pass;
|
|
bool modified = false;
|
|
std::shared_ptr<MapNode> map_node = std::dynamic_pointer_cast<MapNode>(root->IRNode());
|
|
// no deepcopy is performed because this doesn't go through tree_adapter
|
|
fusion_pass.Run(root->IRNode(), &modified);
|
|
EXPECT_EQ(modified, true);
|
|
ASSERT_NE(map_node, nullptr);
|
|
auto fused_ops = map_node->operations();
|
|
ASSERT_EQ(fused_ops.size(), 1);
|
|
ASSERT_EQ(fused_ops[0]->Name(), vision::kRandomCropDecodeResizeOperation);
|
|
}
|
|
|
|
TEST_F(MindDataTestOptimizationPass, MindDataTestTensorFusionPassPreBuiltTensorOperation) {
|
|
MS_LOG(INFO) << "Doing MindDataTestOptimizationPass-MindDataTestTensorFusionPassPreBuiltTensorOperation.";
|
|
std::string folder_path = datasets_root_path_ + "/testPK/data/";
|
|
// make prebuilt tensor operation
|
|
auto decode = std::make_shared<transforms::PreBuiltOperation>(vision::DecodeOperation(true).Build());
|
|
auto resize = std::make_shared<transforms::PreBuiltOperation>(
|
|
vision::RandomResizedCropOperation({100, 100}, {0.5, 1.0}, {0.1, 0.2}, InterpolationMode::kNearestNeighbour, 5).Build());
|
|
std::vector<std::shared_ptr<TensorOperation>> op_list = {decode, resize};
|
|
std::vector<std::string> op_name = {"image"};
|
|
std::shared_ptr<DatasetNode> root = ImageFolder(folder_path, false)->IRNode();
|
|
std::shared_ptr<MapNode> map_node = std::make_shared<MapNode>(root, op_list, op_name);
|
|
|
|
TensorOpFusionPass fusion_pass;
|
|
bool modified = false;
|
|
// no deepcopy is performed because this doesn't go through tree_adapter
|
|
fusion_pass.Run(map_node, &modified);
|
|
EXPECT_EQ(modified, true);
|
|
ASSERT_NE(map_node, nullptr);
|
|
auto fused_ops = map_node->operations();
|
|
ASSERT_EQ(fused_ops.size(), 1);
|
|
ASSERT_EQ(fused_ops[0]->Name(), kRandomCropDecodeResizeOp);
|
|
}
|