forked from mindspore-Ecosystem/mindspore
122 lines
5.1 KiB
C++
122 lines
5.1 KiB
C++
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "common/common.h"
|
|
#include "common/cvop_common.h"
|
|
#include "minddata/dataset/kernels/image/cutmix_batch_op.h"
|
|
#include "utils/log_adapter.h"
|
|
|
|
using namespace mindspore::dataset;
|
|
using mindspore::LogStream;
|
|
using mindspore::ExceptionType::NoExceptionType;
|
|
using mindspore::MsLogLevel::INFO;
|
|
|
|
class MindDataTestCutMixBatchOp : public UT::CVOP::CVOpCommon {
|
|
protected:
|
|
MindDataTestCutMixBatchOp() : CVOpCommon() {}
|
|
};
|
|
|
|
TEST_F(MindDataTestCutMixBatchOp, TestSuccess1) {
|
|
MS_LOG(INFO) << "Doing MindDataTestCutMixBatchOp success1 case";
|
|
std::shared_ptr<Tensor> input_tensor_resized;
|
|
std::shared_ptr<Tensor> batched_tensor;
|
|
std::shared_ptr<Tensor> batched_labels;
|
|
Resize(input_tensor_, &input_tensor_resized, 227, 403);
|
|
|
|
Tensor::CreateEmpty(TensorShape({2, input_tensor_resized->shape()[0], input_tensor_resized->shape()[1],
|
|
input_tensor_resized->shape()[2]}), input_tensor_resized->type(), &batched_tensor);
|
|
for (int i = 0; i < 2; i++) {
|
|
batched_tensor->InsertTensor({i}, input_tensor_resized);
|
|
}
|
|
Tensor::CreateFromVector(std::vector<uint32_t>({0, 1, 1, 0}), TensorShape({2, 2}), &batched_labels);
|
|
std::shared_ptr<CutMixBatchOp> op = std::make_shared<CutMixBatchOp>(ImageBatchFormat::kNHWC, 1.0, 1.0);
|
|
TensorRow in;
|
|
in.push_back(batched_tensor);
|
|
in.push_back(batched_labels);
|
|
TensorRow out;
|
|
ASSERT_TRUE(op->Compute(in, &out).IsOk());
|
|
|
|
EXPECT_EQ(in.at(0)->shape()[0], out.at(0)->shape()[0]);
|
|
EXPECT_EQ(in.at(0)->shape()[1], out.at(0)->shape()[1]);
|
|
EXPECT_EQ(in.at(0)->shape()[2], out.at(0)->shape()[2]);
|
|
EXPECT_EQ(in.at(0)->shape()[3], out.at(0)->shape()[3]);
|
|
|
|
EXPECT_EQ(in.at(1)->shape()[0], out.at(1)->shape()[0]);
|
|
EXPECT_EQ(in.at(1)->shape()[1], out.at(1)->shape()[1]);
|
|
}
|
|
|
|
TEST_F(MindDataTestCutMixBatchOp, TestSuccess2) {
|
|
MS_LOG(INFO) << "Doing MindDataTestCutMixBatchOp success2 case";
|
|
std::shared_ptr<Tensor> input_tensor_resized;
|
|
std::shared_ptr<Tensor> batched_tensor;
|
|
std::shared_ptr<Tensor> batched_labels;
|
|
std::shared_ptr<Tensor> chw_tensor;
|
|
Resize(input_tensor_, &input_tensor_resized, 227, 403);
|
|
|
|
ASSERT_TRUE(HwcToChw(input_tensor_resized, &chw_tensor).IsOk());
|
|
Tensor::CreateEmpty(TensorShape({2, chw_tensor->shape()[0], chw_tensor->shape()[1], chw_tensor->shape()[2]}),
|
|
chw_tensor->type(), &batched_tensor);
|
|
for (int i = 0; i < 2; i++) {
|
|
batched_tensor->InsertTensor({i}, chw_tensor);
|
|
}
|
|
Tensor::CreateFromVector(std::vector<uint32_t>({0, 1, 1, 0}), TensorShape({2, 2}), &batched_labels);
|
|
std::shared_ptr<CutMixBatchOp> op = std::make_shared<CutMixBatchOp>(ImageBatchFormat::kNCHW, 1.0, 0.5);
|
|
TensorRow in;
|
|
in.push_back(batched_tensor);
|
|
in.push_back(batched_labels);
|
|
TensorRow out;
|
|
ASSERT_TRUE(op->Compute(in, &out).IsOk());
|
|
|
|
EXPECT_EQ(in.at(0)->shape()[0], out.at(0)->shape()[0]);
|
|
EXPECT_EQ(in.at(0)->shape()[1], out.at(0)->shape()[1]);
|
|
EXPECT_EQ(in.at(0)->shape()[2], out.at(0)->shape()[2]);
|
|
EXPECT_EQ(in.at(0)->shape()[3], out.at(0)->shape()[3]);
|
|
|
|
EXPECT_EQ(in.at(1)->shape()[0], out.at(1)->shape()[0]);
|
|
EXPECT_EQ(in.at(1)->shape()[1], out.at(1)->shape()[1]);
|
|
}
|
|
|
|
TEST_F(MindDataTestCutMixBatchOp, TestFail1) {
|
|
// This is a fail case because our labels are not batched and are 1-dimensional
|
|
MS_LOG(INFO) << "Doing MindDataTestCutMixBatchOp fail1 case";
|
|
std::shared_ptr<Tensor> labels;
|
|
Tensor::CreateFromVector(std::vector<uint32_t>({0, 1, 1, 0}), TensorShape({4}), &labels);
|
|
std::shared_ptr<CutMixBatchOp> op = std::make_shared<CutMixBatchOp>(ImageBatchFormat::kNHWC, 1.0, 1.0);
|
|
TensorRow in;
|
|
in.push_back(input_tensor_);
|
|
in.push_back(labels);
|
|
TensorRow out;
|
|
ASSERT_FALSE(op->Compute(in, &out).IsOk());
|
|
}
|
|
|
|
TEST_F(MindDataTestCutMixBatchOp, TestFail2) {
|
|
// This should fail because the image_batch_format provided is not the same as the actual format of the images
|
|
MS_LOG(INFO) << "Doing MindDataTestCutMixBatchOp fail2 case";
|
|
std::shared_ptr<Tensor> batched_tensor;
|
|
std::shared_ptr<Tensor> batched_labels;
|
|
Tensor::CreateEmpty(TensorShape({2, input_tensor_->shape()[0], input_tensor_->shape()[1], input_tensor_->shape()[2]}),
|
|
input_tensor_->type(), &batched_tensor);
|
|
for (int i = 0; i < 2; i++) {
|
|
batched_tensor->InsertTensor({i}, input_tensor_);
|
|
}
|
|
Tensor::CreateFromVector(std::vector<uint32_t>({0, 1, 1, 0}), TensorShape({2, 2}), &batched_labels);
|
|
std::shared_ptr<CutMixBatchOp> op = std::make_shared<CutMixBatchOp>(ImageBatchFormat::kNCHW, 1.0, 1.0);
|
|
TensorRow in;
|
|
in.push_back(batched_tensor);
|
|
in.push_back(batched_labels);
|
|
TensorRow out;
|
|
ASSERT_FALSE(op->Compute(in, &out).IsOk());
|
|
}
|