yuzhenhua 4128fb1155 | ||
---|---|---|
.. | ||
scripts | ||
src | ||
README.md | ||
README_CN.md | ||
create_data.py | ||
eval.py | ||
export.py | ||
mindspore_hub_conf.py | ||
train.py |
README.md
Contents
- Transfomer Description
- Model Architecture
- Dataset
- Environment Requirements
- Quick Start
- Script Description
- Model Description
- Description of Random Situation
- ModelZoo Homepage
Transfomer Description
Transformer was proposed in 2017 and designed to process sequential data. It is adopted mainly in the field of natural language processing(NLP), for tasks like machine translation or text summarization. Unlike traditional recurrent neural network(RNN) which processes data in order, Transformer adopts attention mechanism and improve the parallelism, therefore reduced training times and made training on larger datasets possible. Since Transformer model was introduced, it has been used to tackle many problems in NLP and derives many network models, such as BERT(Bidirectional Encoder Representations from Transformers) and GPT(Generative Pre-trained Transformer).
Paper: Ashish Vaswani, Noam Shazeer, Niki Parmar, JakobUszkoreit, Llion Jones, Aidan N Gomez, Ł ukaszKaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS 2017, pages 5998–6008.
Model Architecture
Specifically, Transformer contains six encoder modules and six decoder modules. Each encoder module consists of a self-attention layer and a feed forward layer, each decoder module consists of a self-attention layer, a encoder-decoder-attention layer and a feed forward layer.
Dataset
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
- WMT Englis-German for training.
- WMT newstest2014 for evaluation.
Environment Requirements
- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the application form to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- For more information, please check the resources below:
Quick Start
After dataset preparation, you can start training and evaluation as follows:
# run training example
sh scripts/run_standalone_train_ascend.sh 0 52 /path/ende-l128-mindrecord
# run distributed training example
sh scripts/run_distribute_train_ascend.sh 8 52 /path/ende-l128-mindrecord rank_table.json
# run evaluation example
python eval.py > eval.log 2>&1 &
Script Description
Script and Sample Code
.
└─Transformer
├─README.md
├─scripts
├─process_output.sh
├─replace-quote.perl
├─run_distribute_train_ascend.sh
└─run_standalone_train_ascend.sh
├─src
├─__init__.py
├─beam_search.py
├─config.py
├─dataset.py
├─eval_config.py
├─lr_schedule.py
├─process_output.py
├─tokenization.py
├─transformer_for_train.py
├─transformer_model.py
└─weight_init.py
├─create_data.py
├─eval.py
└─train.py
Script Parameters
Training Script Parameters
usage: train.py [--distribute DISTRIBUTE] [--epoch_size N] [----device_num N] [--device_id N]
[--enable_save_ckpt ENABLE_SAVE_CKPT]
[--enable_lossscale ENABLE_LOSSSCALE] [--do_shuffle DO_SHUFFLE]
[--save_checkpoint_steps N] [--save_checkpoint_num N]
[--save_checkpoint_path SAVE_CHECKPOINT_PATH]
[--data_path DATA_PATH] [--bucket_boundaries BUCKET_LENGTH]
options:
--distribute pre_training by serveral devices: "true"(training by more than 1 device) | "false", default is "false"
--epoch_size epoch size: N, default is 52
--device_num number of used devices: N, default is 1
--device_id device id: N, default is 0
--enable_save_ckpt enable save checkpoint: "true" | "false", default is "true"
--enable_lossscale enable lossscale: "true" | "false", default is "true"
--do_shuffle enable shuffle: "true" | "false", default is "true"
--checkpoint_path path to load checkpoint files: PATH, default is ""
--save_checkpoint_steps steps for saving checkpoint files: N, default is 2500
--save_checkpoint_num number for saving checkpoint files: N, default is 30
--save_checkpoint_path path to save checkpoint files: PATH, default is "./checkpoint/"
--data_path path to dataset file: PATH, default is ""
--bucket_boundaries sequence lengths for different bucket: LIST, default is [16, 32, 48, 64, 128]
Running Options
config.py:
transformer_network version of Transformer model: base | large, default is large
init_loss_scale_value initial value of loss scale: N, default is 2^10
scale_factor factor used to update loss scale: N, default is 2
scale_window steps for once updatation of loss scale: N, default is 2000
optimizer optimizer used in the network: Adam, default is "Adam"
eval_config.py:
transformer_network version of Transformer model: base | large, default is large
data_file data file: PATH
model_file checkpoint file to be loaded: PATH
output_file output file of evaluation: PATH
Network Parameters
Parameters for dataset and network (Training/Evaluation):
batch_size batch size of input dataset: N, default is 96
seq_length max length of input sequence: N, default is 128
vocab_size size of each embedding vector: N, default is 36560
hidden_size size of Transformer encoder layers: N, default is 1024
num_hidden_layers number of hidden layers: N, default is 6
num_attention_heads number of attention heads: N, default is 16
intermediate_size size of intermediate layer: N, default is 4096
hidden_act activation function used: ACTIVATION, default is "relu"
hidden_dropout_prob dropout probability for TransformerOutput: Q, default is 0.3
attention_probs_dropout_prob dropout probability for TransformerAttention: Q, default is 0.3
max_position_embeddings maximum length of sequences: N, default is 128
initializer_range initialization value of TruncatedNormal: Q, default is 0.02
label_smoothing label smoothing setting: Q, default is 0.1
beam_width beam width setting: N, default is 4
max_decode_length max decode length in evaluation: N, default is 80
length_penalty_weight normalize scores of translations according to their length: Q, default is 1.0
compute_type compute type in Transformer: mstype.float16 | mstype.float32, default is mstype.float16
Parameters for learning rate:
learning_rate value of learning rate: Q
warmup_steps steps of the learning rate warm up: N
start_decay_step step of the learning rate to decay: N
min_lr minimal learning rate: Q
Dataset Preparation
-
You may use this shell script to download and preprocess WMT English-German dataset. Assuming you get the following files:
- train.tok.clean.bpe.32000.en
- train.tok.clean.bpe.32000.de
- vocab.bpe.32000
- newstest2014.tok.bpe.32000.en
- newstest2014.tok.bpe.32000.de
- newstest2014.tok.de
-
Convert the original data to mindrecord for training:
paste train.tok.clean.bpe.32000.en train.tok.clean.bpe.32000.de > train.all python create_data.py --input_file train.all --vocab_file vocab.bpe.32000 --output_file /path/ende-l128-mindrecord --max_seq_length 128 --bucket [16,32,48,64,128]
-
Convert the original data to mindrecord for evaluation:
paste newstest2014.tok.bpe.32000.en newstest2014.tok.bpe.32000.de > test.all python create_data.py --input_file test.all --vocab_file vocab.bpe.32000 --output_file /path/newstest2014-l128-mindrecord --num_splits 1 --max_seq_length 128 --clip_to_max_len True --bucket [128]
Training Process
-
Set options in
config.py
, including loss_scale, learning rate and network hyperparameters. Click here for more information about dataset. -
Run
run_standalone_train.sh
for non-distributed training of Transformer model.sh scripts/run_standalone_train.sh DEVICE_TARGET DEVICE_ID EPOCH_SIZE DATA_PATH
-
Run
run_distribute_train_ascend.sh
for distributed training of Transformer model.sh scripts/run_distribute_train_ascend.sh DEVICE_NUM EPOCH_SIZE DATA_PATH RANK_TABLE_FILE
Evaluation Process
-
Set options in
eval_config.py
. Make sure the 'data_file', 'model_file' and 'output_file' are set to your own path. -
Run
eval.py
for evaluation of Transformer model.python eval.py
-
Run
process_output.sh
to process the output token ids to get the real translation results.sh scripts/process_output.sh REF_DATA EVAL_OUTPUT VOCAB_FILE
You will get two files, REF_DATA.forbleu and EVAL_OUTPUT.forbleu, for BLEU score calculation.
-
Calculate BLEU score, you may use this perl script and run following command to get the BLEU score.
perl multi-bleu.perl REF_DATA.forbleu < EVAL_OUTPUT.forbleu
Model Description
Performance
Training Performance
Parameters | Ascend |
---|---|
Resource | Ascend 910 |
uploaded Date | 09/15/2020 (month/day/year) |
MindSpore Version | 1.0.0 |
Dataset | WMT Englis-German |
Training Parameters | epoch=52, batch_size=96 |
Optimizer | Adam |
Loss Function | Softmax Cross Entropy |
BLEU Score | 28.7 |
Speed | 400ms/step (8pcs) |
Loss | 2.8 |
Params (M) | 213.7 |
Checkpoint for inference | 2.4G (.ckpt file) |
Scripts | Transformer scripts |
Evaluation Performance
Parameters | Ascend |
---|---|
Resource | Ascend 910 |
Uploaded Date | 09/15/2020 (month/day/year) |
MindSpore Version | 1.0.0 |
Dataset | WMT newstest2014 |
batch_size | 1 |
outputs | BLEU score |
Accuracy | BLEU=28.7 |
Description of Random Situation
There are three random situations:
- Shuffle of the dataset.
- Initialization of some model weights.
- Dropout operations.
Some seeds have already been set in train.py to avoid the randomness of dataset shuffle and weight initialization. If you want to disable dropout, please set the corresponding dropout_prob parameter to 0 in src/config.py.
ModelZoo Homepage
Please check the official homepage.