mindspore/model_zoo/resnet101
buxue 66bbdb4a31 change tensor dtype and shape from function to attr 2020-06-12 19:03:23 +08:00
..
scripts resnet101 modify to model_zoo 2020-06-09 19:20:36 +08:00
src add backbone for resnet101 2020-06-10 14:39:44 +08:00
README.md add backbone for resnet101 2020-06-10 14:39:44 +08:00
eval.py add backbone for resnet101 2020-06-10 14:39:44 +08:00
train.py change tensor dtype and shape from function to attr 2020-06-12 19:03:23 +08:00

README.md

ResNet101 Example

Description

This is an example of training ResNet101 with ImageNet dataset in MindSpore.

Requirements

  • Install MindSpore.

  • Download the dataset ImageNet2012.

Unzip the ImageNet2012 dataset to any path you want, the folder should include train and eval dataset as follows:

.
└─dataset
    ├─ilsvrc
    │
    └─validation_preprocess

Structure

.
└─resnet101      
  ├─README.md
  ├─scripts      
    ├─run_standalone_train.sh         # launch standalone training(1p)
    ├─run_distribute_train.sh         # launch distributed training(8p)
    └─run_eval.sh                     # launch evaluating
  ├─src
    ├─config.py                       # parameter configuration
    ├─crossentropy.py                 # CrossEntropy loss function
    ├─dataset.py                      # data preprocessin
    ├─lr_generator.py                 # generate learning rate
    ├─resnet101.py                    # resnet101 backbone
  ├─eval.py                           # eval net
  └─train.py                          # train net

Parameter configuration

Parameters for both training and evaluating can be set in config.py.

"class_num": 1001,                # dataset class number
"batch_size": 32,                 # batch size of input tensor
"loss_scale": 1024,               # loss scale
"momentum": 0.9,                  # momentum optimizer
"weight_decay": 1e-4,             # weight decay
"epoch_size": 120,                # epoch sizes for training
"pretrain_epoch_size": 0,         # epoch size of pretrain checkpoint
"buffer_size": 1000,              # number of queue size in data preprocessing
"image_height": 224,              # image height
"image_width": 224,               # image width
"save_checkpoint": True,          # whether save checkpoint or not
"save_checkpoint_epochs": 1,      # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last epoch
"keep_checkpoint_max": 10,        # only keep the last keep_checkpoint_max checkpoint
"save_checkpoint_path": "./",     # path to save checkpoint relative to the executed path
"warmup_epochs": 0,               # number of warmup epoch
"lr_decay_mode": "cosine"         # decay mode for generating learning rate
"label_smooth": 1,                # label_smooth
"label_smooth_factor": 0.1,       # label_smooth_factor
"lr": 0.1                         # base learning rate

Running the example

Train

Usage

# distributed training
sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)
 
# standalone training
sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)

Launch

# distributed training example(8p)
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc

If you want to load pretrained ckpt file, 
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./ckpt/pretrained.ckpt

# standalone training example1p
sh run_standalone_train.sh dataset/ilsvrc

If you want to load pretrained ckpt file,
sh run_standalone_train.sh dataset/ilsvrc ./ckpt/pretrained.ckpt

About rank_table.json, you can refer to the distributed training tutorial.

Result

Training result will be stored in the scripts path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the followings in log.

# distribute training result(8p)
epoch: 1 step: 5004, loss is 4.805483
epoch: 2 step: 5004, loss is 3.2121816
epoch: 3 step: 5004, loss is 3.429647
epoch: 4 step: 5004, loss is 3.3667371
epoch: 5 step: 5004, loss is 3.1718972
...
epoch: 67 step: 5004, loss is 2.2768745
epoch: 68 step: 5004, loss is 1.7223864
epoch: 69 step: 5004, loss is 2.0665488
epoch: 70 step: 5004, loss is 1.8717369
...

Infer

Usage

# infer
sh run_eval.sh [VALIDATION_DATASET_PATH] [CHECKPOINT_PATH]

Launch

# infer with checkpoint
sh run_eval.sh dataset/validation_preprocess/ train_parallel0/resnet-120_5004.ckpt

checkpoint can be produced in training process.

Result

Inference result will be stored in the scripts path, whose folder name is "eval". Under this, you can find result like the followings in log.

result: {'top_5_accuracy': 0.9429417413572343, 'top_1_accuracy': 0.7853513124199744} ckpt=train_parallel0/resnet-120_5004.ckpt