mindspore/model_zoo
liyong 748e07eb9e adjust model zoo utils 2020-06-28 23:19:20 +08:00
..
Transformer add flags on function 2020-06-23 20:22:07 +08:00
alexnet modify dataset.py 2020-06-22 20:06:53 +08:00
bert add flags on function 2020-06-23 20:22:07 +08:00
deepfm add DeepFM 2020-05-28 23:31:11 +08:00
deeplabv3 add flags on function 2020-06-23 20:22:07 +08:00
faster_rcnn optimize fastrcnn training process 2020-06-27 03:31:41 -04:00
gat adjust model zoo utils 2020-06-28 23:19:20 +08:00
gcn adjust model zoo utils 2020-06-28 23:19:20 +08:00
googlenet Move googlenet into ModelZoo and add superlink in README 2020-06-19 20:50:10 +08:00
lenet checkpoint add model_type 2020-06-24 12:31:08 +08:00
lenet_quant checkpoint add model_type 2020-06-24 12:31:08 +08:00
lstm change lstm import pacakge location 2020-06-23 11:28:27 +08:00
mass Implements of masked seq2seq pre-training for language generation. 2020-06-20 15:48:49 +08:00
mobilenetv2 change tensor dtype and shape from function to attr 2020-06-12 19:03:23 +08:00
mobilenetv3 change tensor dtype and shape from function to attr 2020-06-12 19:03:23 +08:00
resnet101 change tensor dtype and shape from function to attr 2020-06-12 19:03:23 +08:00
ssd change tensor dtype and shape from function to attr 2020-06-12 19:03:23 +08:00
utils adjust model zoo utils 2020-06-28 23:19:20 +08:00
vgg16 fix accurancy lower then 92 2020-06-24 14:08:16 +08:00
wide_and_deep add wide&deep stanalone training script for gpu in model zoo 2020-06-24 14:55:28 +08:00
yolov3 clear pylint for yolov3 2020-06-19 10:28:07 +08:00
README.md Move googlenet into ModelZoo and add superlink in README 2020-06-19 20:50:10 +08:00
__init__.py Implements of masked seq2seq pre-training for language generation. 2020-06-20 15:48:49 +08:00

README.md

Welcome to the Model Zoo for MindSpore

In order to facilitate developers to enjoy the benefits of MindSpore framework and Huawei chips, we will continue to add typical networks and models . If you have needs for the model zoo, you can file an issue on gitee or MindSpore, We will consider it in time.

  • SOTA models using the latest MindSpore APIs

  • The best benefits from MindSpore and Huawei chips

  • Officially maintained and supported

Table of Contents

Announcements

Date News
May 31, 2020 Support MindSpore v0.3.0-alpha

Models and Implementations

Computer Vision

Image Classification

GoogleNet

Parameters GoogleNet
Published Year 2014
Paper Going Deeper with Convolutions
Resource Ascend 910
Features • Mixed Precision • Multi-GPU training support with Ascend
MindSpore Version 0.3.0-alpha
Dataset CIFAR-10
Training Parameters epoch=125, batch_size = 128, lr=0.1
Optimizer Momentum
Loss Function Softmax Cross Entropy
Accuracy 1pc: 93.4%; 8pcs: 92.17%
Speed 79 ms/Step
Loss 0.0016
Params (M) 6.8
Checkpoint for Fine tuning 43.07M (.ckpt file)
Model for inference 21.50M (.onnx file), 21.60M(.geir file)
Scripts https://gitee.com/mindspore/mindspore/tree/master/model_zoo/googlenet

ResNet50

Parameters ResNet50
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

ResNet101

Parameters ResNet101
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

VGG16

Parameters VGG16
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

AlexNet

Parameters AlexNet
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

LeNet

Parameters LeNet
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Accuracy
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

Object Detection and Segmentation

YoloV3

Parameters YoLoV3
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Mean Average Precision (mAP@0.5)
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

MobileNetV2

Parameters MobileNetV2
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Mean Average Precision (mAP@0.5)
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

MobileNetV3

Parameters MobileNetV3
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Mean Average Precision (mAP@0.5)
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

SSD

Parameters SSD
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
Mean Average Precision (mAP@0.5)
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

Natural Language Processing

BERT

Parameters BERT
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
GLUE Score
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

MASS

Parameters MASS
Published Year
Paper
Resource
Features
MindSpore Version
Dataset
Training Parameters
Optimizer
Loss Function
ROUGE Score
Speed
Loss
Params (M)
Checkpoint for Fine tuning
Model for inference
Scripts

License

Apache License 2.0