forked from mindspore-Ecosystem/mindspore
131 lines
5.1 KiB
Python
131 lines
5.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# less required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""Evaluation for FasterRcnn"""
|
|
import os
|
|
import argparse
|
|
import time
|
|
import random
|
|
import numpy as np
|
|
from pycocotools.coco import COCO
|
|
from mindspore import context, Tensor
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
import mindspore.dataset.engine as de
|
|
|
|
from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50
|
|
from src.config import config
|
|
from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset
|
|
from src.util import coco_eval, bbox2result_1image, results2json
|
|
|
|
random.seed(1)
|
|
np.random.seed(1)
|
|
de.config.set_seed(1)
|
|
|
|
parser = argparse.ArgumentParser(description="FasterRcnn evaluation")
|
|
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
|
|
parser.add_argument("--ann_file", type=str, default="val.json", help="Ann file, default is val.json.")
|
|
parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
|
args_opt = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=args_opt.device_id)
|
|
|
|
def FasterRcnn_eval(dataset_path, ckpt_path, ann_file):
|
|
"""FasterRcnn evaluation."""
|
|
ds = create_fasterrcnn_dataset(dataset_path, batch_size=config.test_batch_size,
|
|
repeat_num=1, is_training=False)
|
|
net = Faster_Rcnn_Resnet50(config)
|
|
param_dict = load_checkpoint(ckpt_path)
|
|
load_param_into_net(net, param_dict)
|
|
net.set_train(False)
|
|
|
|
eval_iter = 0
|
|
total = ds.get_dataset_size()
|
|
outputs = []
|
|
dataset_coco = COCO(ann_file)
|
|
|
|
print("\n========================================\n")
|
|
print("total images num: ", total)
|
|
print("Processing, please wait a moment.")
|
|
max_num = 128
|
|
for data in ds.create_dict_iterator():
|
|
eval_iter = eval_iter + 1
|
|
|
|
img_data = data['image']
|
|
img_metas = data['image_shape']
|
|
gt_bboxes = data['box']
|
|
gt_labels = data['label']
|
|
gt_num = data['valid_num']
|
|
|
|
start = time.time()
|
|
# run net
|
|
output = net(Tensor(img_data), Tensor(img_metas), Tensor(gt_bboxes), Tensor(gt_labels), Tensor(gt_num))
|
|
end = time.time()
|
|
print("Iter {} cost time {}".format(eval_iter, end - start))
|
|
|
|
# output
|
|
all_bbox = output[0]
|
|
all_label = output[1]
|
|
all_mask = output[2]
|
|
|
|
for j in range(config.test_batch_size):
|
|
all_bbox_squee = np.squeeze(all_bbox.asnumpy()[j, :, :])
|
|
all_label_squee = np.squeeze(all_label.asnumpy()[j, :, :])
|
|
all_mask_squee = np.squeeze(all_mask.asnumpy()[j, :, :])
|
|
|
|
all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :]
|
|
all_labels_tmp_mask = all_label_squee[all_mask_squee]
|
|
|
|
if all_bboxes_tmp_mask.shape[0] > max_num:
|
|
inds = np.argsort(-all_bboxes_tmp_mask[:, -1])
|
|
inds = inds[:max_num]
|
|
all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds]
|
|
all_labels_tmp_mask = all_labels_tmp_mask[inds]
|
|
|
|
outputs_tmp = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes)
|
|
|
|
outputs.append(outputs_tmp)
|
|
|
|
eval_types = ["bbox"]
|
|
result_files = results2json(dataset_coco, outputs, "./results.pkl")
|
|
|
|
coco_eval(result_files, eval_types, dataset_coco, single_result=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
prefix = "FasterRcnn_eval.mindrecord"
|
|
mindrecord_dir = config.mindrecord_dir
|
|
mindrecord_file = os.path.join(mindrecord_dir, prefix)
|
|
if not os.path.exists(mindrecord_file):
|
|
if not os.path.isdir(mindrecord_dir):
|
|
os.makedirs(mindrecord_dir)
|
|
if args_opt.dataset == "coco":
|
|
if os.path.isdir(config.coco_root):
|
|
print("Create Mindrecord.")
|
|
data_to_mindrecord_byte_image("coco", False, prefix, file_num=1)
|
|
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
|
|
else:
|
|
print("coco_root not exits.")
|
|
else:
|
|
if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH):
|
|
print("Create Mindrecord.")
|
|
data_to_mindrecord_byte_image("other", False, prefix, file_num=1)
|
|
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
|
|
else:
|
|
print("IMAGE_DIR or ANNO_PATH not exits.")
|
|
|
|
print("Start Eval!")
|
|
FasterRcnn_eval(mindrecord_file, args_opt.checkpoint_path, args_opt.ann_file)
|