forked from mindspore-Ecosystem/mindspore
89 lines
3.2 KiB
Python
89 lines
3.2 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""post process for 310 inference"""
|
|
import os
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from src.model_utils.config import config
|
|
from src.coco_eval import metrics
|
|
|
|
batch_size = 1
|
|
|
|
|
|
def get_imgSize(file_name):
|
|
img = Image.open(file_name)
|
|
return img.size
|
|
|
|
|
|
def get_result(result_path, img_id_file_path, drop=True):
|
|
""" get result"""
|
|
coco_root = os.path.join(config.data_path, "coco_ori")
|
|
anno_json = os.path.join(coco_root, config.instances_set.format(config.val_data_type))
|
|
|
|
if drop:
|
|
from pycocotools.coco import COCO
|
|
train_cls = config.coco_classes
|
|
train_cls_dict = {}
|
|
for i, cls in enumerate(train_cls):
|
|
train_cls_dict[cls] = i
|
|
coco = COCO(anno_json)
|
|
classs_dict = {}
|
|
cat_ids = coco.loadCats(coco.getCatIds())
|
|
for cat in cat_ids:
|
|
classs_dict[cat["id"]] = cat["name"]
|
|
|
|
files = os.listdir(img_id_file_path)
|
|
pred_data = []
|
|
|
|
for file in files:
|
|
img_ids_name = file.split('.')[0]
|
|
img_id = int(np.squeeze(img_ids_name))
|
|
if drop:
|
|
anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None)
|
|
anno = coco.loadAnns(anno_ids)
|
|
annos = []
|
|
iscrowd = False
|
|
for label in anno:
|
|
bbox = label["bbox"]
|
|
class_name = classs_dict[label["category_id"]]
|
|
iscrowd = iscrowd or label["iscrowd"]
|
|
if class_name in train_cls:
|
|
x_min, x_max = bbox[0], bbox[0] + bbox[2]
|
|
y_min, y_max = bbox[1], bbox[1] + bbox[3]
|
|
annos.append(list(map(round, [y_min, x_min, y_max, x_max])) + [train_cls_dict[class_name]])
|
|
if iscrowd or (not annos):
|
|
continue
|
|
|
|
img_size = get_imgSize(os.path.join(img_id_file_path, file))
|
|
image_shape = np.array([img_size[1], img_size[0]])
|
|
result_path_0 = os.path.join(result_path, img_ids_name + "_0.bin")
|
|
result_path_1 = os.path.join(result_path, img_ids_name + "_1.bin")
|
|
boxes = np.fromfile(result_path_0, dtype=np.float32).reshape(config.num_ssd_boxes, 4)
|
|
box_scores = np.fromfile(result_path_1, dtype=np.float32).reshape(config.num_ssd_boxes, config.num_classes)
|
|
|
|
pred_data.append({
|
|
"boxes": boxes,
|
|
"box_scores": box_scores,
|
|
"img_id": img_id,
|
|
"image_shape": image_shape
|
|
})
|
|
mAP = metrics(pred_data)
|
|
print(f" mAP:{mAP}")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
get_result(config.result_path, config.img_path)
|