mindspore/tests/ut/python/dataset/test_tensor_string.py

299 lines
11 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore._c_dataengine as cde
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
from mindspore.dataset.text import to_str, to_bytes
def test_basic():
x = np.array([["ab", "cde", "121"], ["x", "km", "789"]], dtype='S')
n = cde.Tensor(x)
arr = n.as_array()
np.testing.assert_array_equal(x, arr)
def compare(strings, dtype='S'):
arr = np.array(strings, dtype=dtype)
def gen():
(yield arr,)
data = ds.GeneratorDataset(gen, column_names=["col"])
for d in data:
np.testing.assert_array_equal(d[0], arr.astype('S'))
def test_generator():
compare(["ab"])
compare(["", ""])
compare([""])
compare(["ab", ""])
compare(["ab", "cde", "121"])
compare([["ab", "cde", "121"], ["x", "km", "789"]])
compare([["ab", "", "121"], ["", "km", "789"]])
compare(["ab"], dtype='U')
compare(["", ""], dtype='U')
compare([""], dtype='U')
compare(["ab", ""], dtype='U')
compare(["", ""], dtype='U')
compare(["", "ab"], dtype='U')
compare(["ab", "cde", "121"], dtype='U')
compare([["ab", "cde", "121"], ["x", "km", "789"]], dtype='U')
compare([["ab", "", "121"], ["", "km", "789"]], dtype='U')
line = np.array(["This is a text file.",
"Be happy every day.",
"Good luck to everyone."])
words = np.array([["This", "text", "file", "a"],
["Be", "happy", "day", "b"],
["", "", "everyone", "c"]])
chinese = np.array(["今天天气太好了我们一起去外面玩吧",
"男默女泪",
"江州市长江大桥参加了长江大桥的通车仪式"])
def test_batching_strings():
def gen():
for row in chinese:
yield (np.array(row),)
data = ds.GeneratorDataset(gen, column_names=["col"])
data = data.batch(2, drop_remainder=True)
for d in data:
np.testing.assert_array_equal(d[0], to_bytes(chinese[0:2]))
def test_map():
def gen():
yield (np.array(["ab cde 121"], dtype='S'),)
data = ds.GeneratorDataset(gen, column_names=["col"])
def split(b):
s = to_str(b)
splits = s.item().split()
return np.array(splits)
data = data.map(input_columns=["col"], operations=split)
expected = np.array(["ab", "cde", "121"], dtype='S')
for d in data:
np.testing.assert_array_equal(d[0], expected)
def test_map2():
def gen():
yield (np.array(["ab cde 121"], dtype='S'),)
data = ds.GeneratorDataset(gen, column_names=["col"])
def upper(b):
out = np.char.upper(b)
return out
data = data.map(input_columns=["col"], operations=upper)
expected = np.array(["AB CDE 121"], dtype='S')
for d in data:
np.testing.assert_array_equal(d[0], expected)
def test_tfrecord1():
s = ds.Schema()
s.add_column("line", "string", [])
s.add_column("words", "string", [-1])
s.add_column("chinese", "string", [])
data = ds.TFRecordDataset("../data/dataset/testTextTFRecord/text.tfrecord", shuffle=False, schema=s)
for i, d in enumerate(data.create_dict_iterator(num_epochs=1)):
assert d["line"].shape == line[i].shape
assert d["words"].shape == words[i].shape
assert d["chinese"].shape == chinese[i].shape
np.testing.assert_array_equal(line[i], to_str(d["line"]))
np.testing.assert_array_equal(words[i], to_str(d["words"]))
np.testing.assert_array_equal(chinese[i], to_str(d["chinese"]))
def test_tfrecord2():
data = ds.TFRecordDataset("../data/dataset/testTextTFRecord/text.tfrecord", shuffle=False,
schema='../data/dataset/testTextTFRecord/datasetSchema.json')
for i, d in enumerate(data.create_dict_iterator(num_epochs=1)):
assert d["line"].shape == line[i].shape
assert d["words"].shape == words[i].shape
assert d["chinese"].shape == chinese[i].shape
np.testing.assert_array_equal(line[i], to_str(d["line"]))
np.testing.assert_array_equal(words[i], to_str(d["words"]))
np.testing.assert_array_equal(chinese[i], to_str(d["chinese"]))
def test_tfrecord3():
s = ds.Schema()
s.add_column("line", mstype.string, [])
s.add_column("words", mstype.string, [-1, 2])
s.add_column("chinese", mstype.string, [])
data = ds.TFRecordDataset("../data/dataset/testTextTFRecord/text.tfrecord", shuffle=False, schema=s)
for i, d in enumerate(data.create_dict_iterator(num_epochs=1)):
assert d["line"].shape == line[i].shape
assert d["words"].shape == words[i].reshape([2, 2]).shape
assert d["chinese"].shape == chinese[i].shape
np.testing.assert_array_equal(line[i], to_str(d["line"]))
np.testing.assert_array_equal(words[i].reshape([2, 2]), to_str(d["words"]))
np.testing.assert_array_equal(chinese[i], to_str(d["chinese"]))
def create_text_mindrecord():
# methood to create mindrecord with string data, used to generate testTextMindRecord/test.mindrecord
from mindspore.mindrecord import FileWriter
mindrecord_file_name = "test.mindrecord"
data = [{"english": "This is a text file.",
"chinese": "今天天气太好了我们一起去外面玩吧"},
{"english": "Be happy every day.",
"chinese": "男默女泪"},
{"english": "Good luck to everyone.",
"chinese": "江州市长江大桥参加了长江大桥的通车仪式"},
]
writer = FileWriter(mindrecord_file_name)
schema = {"english": {"type": "string"},
"chinese": {"type": "string"},
}
writer.add_schema(schema)
writer.write_raw_data(data)
writer.commit()
def test_mindrecord():
data = ds.MindDataset("../data/dataset/testTextMindRecord/test.mindrecord", shuffle=False)
for i, d in enumerate(data.create_dict_iterator(num_epochs=1)):
assert d["english"].shape == line[i].shape
assert d["chinese"].shape == chinese[i].shape
np.testing.assert_array_equal(line[i], to_str(d["english"]))
np.testing.assert_array_equal(chinese[i], to_str(d["chinese"]))
# The following tests cases were copied from test_pad_batch but changed to strings instead
# this generator function yield two columns
# col1d: [0],[1], [2], [3]
# col2d: [[100],[200]], [[101],[201]], [102],[202]], [103],[203]]
def gen_2cols(num):
for i in range(num):
yield (np.array([str(i)]), np.array([[str(i + 100)], [str(i + 200)]]))
# this generator function yield one column of variable shapes
# col: [0], [0,1], [0,1,2], [0,1,2,3]
def gen_var_col(num):
for i in range(num):
yield (np.array([str(j) for j in range(i + 1)]),)
# this generator function yield two columns of variable shapes
# col1: [0], [0,1], [0,1,2], [0,1,2,3]
# col2: [100], [100,101], [100,101,102], [100,110,102,103]
def gen_var_cols(num):
for i in range(num):
yield (np.array([str(j) for j in range(i + 1)]), np.array([str(100 + j) for j in range(i + 1)]))
# this generator function yield two columns of variable shapes
# col1: [[0]], [[0,1]], [[0,1,2]], [[0,1,2,3]]
# col2: [[100]], [[100,101]], [[100,101,102]], [[100,110,102,103]]
def gen_var_cols_2d(num):
for i in range(num):
yield (np.array([[str(j) for j in range(i + 1)]]), np.array([[str(100 + j) for j in range(i + 1)]]))
def test_batch_padding_01():
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([2, 2], b"-2"), "col1d": ([2], b"-1")})
data1 = data1.repeat(2)
for data in data1.create_dict_iterator(num_epochs=1):
np.testing.assert_array_equal([[b"0", b"-1"], [b"1", b"-1"]], data["col1d"])
np.testing.assert_array_equal([[[b"100", b"-2"], [b"200", b"-2"]], [[b"101", b"-2"], [b"201", b"-2"]]],
data["col2d"])
def test_batch_padding_02():
data1 = ds.GeneratorDataset((lambda: gen_2cols(2)), ["col1d", "col2d"])
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([1, 2], "")})
data1 = data1.repeat(2)
for data in data1.create_dict_iterator(num_epochs=1):
np.testing.assert_array_equal([[b"0"], [b"1"]], data["col1d"])
np.testing.assert_array_equal([[[b"100", b""]], [[b"101", b""]]], data["col2d"])
def test_batch_padding_03():
data1 = ds.GeneratorDataset((lambda: gen_var_col(4)), ["col"])
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col": (None, "PAD_VALUE")}) # pad automatically
data1 = data1.repeat(2)
res = dict()
for ind, data in enumerate(data1.create_dict_iterator(num_epochs=1)):
res[ind] = data["col"].copy()
np.testing.assert_array_equal(res[0], [[b"0", b"PAD_VALUE"], [0, 1]])
np.testing.assert_array_equal(res[1], [[b"0", b"1", b"2", b"PAD_VALUE"], [b"0", b"1", b"2", b"3"]])
np.testing.assert_array_equal(res[2], [[b"0", b"PAD_VALUE"], [b"0", b"1"]])
np.testing.assert_array_equal(res[3], [[b"0", b"1", b"2", b"PAD_VALUE"], [b"0", b"1", b"2", b"3"]])
def test_batch_padding_04():
data1 = ds.GeneratorDataset((lambda: gen_var_cols(2)), ["col1", "col2"])
data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={}) # pad automatically
data1 = data1.repeat(2)
for data in data1.create_dict_iterator(num_epochs=1):
np.testing.assert_array_equal(data["col1"], [[b"0", b""], [b"0", b"1"]])
np.testing.assert_array_equal(data["col2"], [[b"100", b""], [b"100", b"101"]])
def test_batch_padding_05():
data1 = ds.GeneratorDataset((lambda: gen_var_cols_2d(3)), ["col1", "col2"])
data1 = data1.batch(batch_size=3, drop_remainder=False,
pad_info={"col2": ([2, None], "-2"), "col1": (None, "-1")}) # pad automatically
for data in data1.create_dict_iterator(num_epochs=1):
np.testing.assert_array_equal(data["col1"],
[[[b"0", b"-1", b"-1"]], [[b"0", b"1", b"-1"]], [[b"0", b"1", b"2"]]])
np.testing.assert_array_equal(data["col2"],
[[[b"100", b"-2", b"-2"], [b"-2", b"-2", b"-2"]],
[[b"100", b"101", b"-2"], [b"-2", b"-2", b"-2"]],
[[b"100", b"101", b"102"], [b"-2", b"-2", b"-2"]]])
if __name__ == '__main__':
test_generator()
test_basic()
test_batching_strings()
test_map()
test_map2()
test_tfrecord1()
test_tfrecord2()
test_tfrecord3()
test_mindrecord()
test_batch_padding_01()
test_batch_padding_02()
test_batch_padding_03()
test_batch_padding_04()
test_batch_padding_05()