forked from mindspore-Ecosystem/mindspore
561 lines
21 KiB
Python
561 lines
21 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing RandomCrop op in DE
|
|
"""
|
|
import numpy as np
|
|
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
|
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
|
import mindspore.dataset.transforms.vision.utils as mode
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
from util import save_and_check_md5, visualize_list, config_get_set_seed, \
|
|
config_get_set_num_parallel_workers
|
|
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def test_random_crop_op_c(plot=False):
|
|
"""
|
|
Test RandomCrop Op in c transforms
|
|
"""
|
|
logger.info("test_random_crop_op_c")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
|
|
decode_op = c_vision.Decode()
|
|
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(input_columns=["image"], operations=decode_op)
|
|
|
|
image_cropped = []
|
|
image = []
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)):
|
|
image1 = item1["image"]
|
|
image2 = item2["image"]
|
|
image_cropped.append(image1)
|
|
image.append(image2)
|
|
if plot:
|
|
visualize_list(image, image_cropped)
|
|
|
|
def test_random_crop_op_py(plot=False):
|
|
"""
|
|
Test RandomCrop op in py transforms
|
|
"""
|
|
logger.info("test_random_crop_op_py")
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms1 = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform1 = py_vision.ComposeOp(transforms1)
|
|
data1 = data1.map(input_columns=["image"], operations=transform1())
|
|
# Second dataset
|
|
# Second dataset for comparison
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms2 = [
|
|
py_vision.Decode(),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform2 = py_vision.ComposeOp(transforms2)
|
|
data2 = data2.map(input_columns=["image"], operations=transform2())
|
|
|
|
crop_images = []
|
|
original_images = []
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)):
|
|
crop = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
crop_images.append(crop)
|
|
original_images.append(original)
|
|
if plot:
|
|
visualize_list(original_images, crop_images)
|
|
|
|
def test_random_crop_01_c():
|
|
"""
|
|
Test RandomCrop op with c_transforms: size is a single integer, expected to pass
|
|
"""
|
|
logger.info("test_random_crop_01_c")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: If size is an int, a square crop of size (size, size) is returned.
|
|
random_crop_op = c_vision.RandomCrop(512)
|
|
decode_op = c_vision.Decode()
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_crop_op)
|
|
|
|
filename = "random_crop_01_c_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_01_py():
|
|
"""
|
|
Test RandomCrop op with py_transforms: size is a single integer, expected to pass
|
|
"""
|
|
logger.info("test_random_crop_01_py")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: If size is an int, a square crop of size (size, size) is returned.
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop(512),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
|
|
filename = "random_crop_01_py_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_02_c():
|
|
"""
|
|
Test RandomCrop op with c_transforms: size is a list/tuple with length 2, expected to pass
|
|
"""
|
|
logger.info("test_random_crop_02_c")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: If size is a sequence of length 2, it should be (height, width).
|
|
random_crop_op = c_vision.RandomCrop([512, 375])
|
|
decode_op = c_vision.Decode()
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_crop_op)
|
|
|
|
filename = "random_crop_02_c_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_02_py():
|
|
"""
|
|
Test RandomCrop op with py_transforms: size is a list/tuple with length 2, expected to pass
|
|
"""
|
|
logger.info("test_random_crop_02_py")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: If size is a sequence of length 2, it should be (height, width).
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop([512, 375]),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
|
|
filename = "random_crop_02_py_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_03_c():
|
|
"""
|
|
Test RandomCrop op with c_transforms: input image size == crop size, expected to pass
|
|
"""
|
|
logger.info("test_random_crop_03_c")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The size of the image is 4032*2268
|
|
random_crop_op = c_vision.RandomCrop([2268, 4032])
|
|
decode_op = c_vision.Decode()
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_crop_op)
|
|
|
|
filename = "random_crop_03_c_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_03_py():
|
|
"""
|
|
Test RandomCrop op with py_transforms: input image size == crop size, expected to pass
|
|
"""
|
|
logger.info("test_random_crop_03_py")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The size of the image is 4032*2268
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop([2268, 4032]),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
|
|
filename = "random_crop_03_py_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_04_c():
|
|
"""
|
|
Test RandomCrop op with c_transforms: input image size < crop size, expected to fail
|
|
"""
|
|
logger.info("test_random_crop_04_c")
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The size of the image is 4032*2268
|
|
random_crop_op = c_vision.RandomCrop([2268, 4033])
|
|
decode_op = c_vision.Decode()
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_crop_op)
|
|
try:
|
|
data.create_dict_iterator(num_epochs=1).get_next()
|
|
except RuntimeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Crop size is greater than the image dim" in str(e)
|
|
|
|
def test_random_crop_04_py():
|
|
"""
|
|
Test RandomCrop op with py_transforms:
|
|
input image size < crop size, expected to fail
|
|
"""
|
|
logger.info("test_random_crop_04_py")
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The size of the image is 4032*2268
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop([2268, 4033]),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
try:
|
|
data.create_dict_iterator(num_epochs=1).get_next()
|
|
except RuntimeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Crop size" in str(e)
|
|
|
|
def test_random_crop_05_c():
|
|
"""
|
|
Test RandomCrop op with c_transforms:
|
|
input image size < crop size but pad_if_needed is enabled,
|
|
expected to pass
|
|
"""
|
|
logger.info("test_random_crop_05_c")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The size of the image is 4032*2268
|
|
random_crop_op = c_vision.RandomCrop([2268, 4033], [200, 200, 200, 200], pad_if_needed=True)
|
|
decode_op = c_vision.Decode()
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_crop_op)
|
|
|
|
filename = "random_crop_05_c_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_05_py():
|
|
"""
|
|
Test RandomCrop op with py_transforms:
|
|
input image size < crop size but pad_if_needed is enabled,
|
|
expected to pass
|
|
"""
|
|
logger.info("test_random_crop_05_py")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The size of the image is 4032*2268
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop([2268, 4033], [200, 200, 200, 200], pad_if_needed=True),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
|
|
filename = "random_crop_05_py_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_06_c():
|
|
"""
|
|
Test RandomCrop op with c_transforms:
|
|
invalid size, expected to raise TypeError
|
|
"""
|
|
logger.info("test_random_crop_06_c")
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
try:
|
|
# Note: if size is neither an int nor a list of length 2, an exception will raise
|
|
random_crop_op = c_vision.RandomCrop([512, 512, 375])
|
|
decode_op = c_vision.Decode()
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_crop_op)
|
|
except TypeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Size should be a single integer" in str(e)
|
|
|
|
def test_random_crop_06_py():
|
|
"""
|
|
Test RandomCrop op with py_transforms:
|
|
invalid size, expected to raise TypeError
|
|
"""
|
|
logger.info("test_random_crop_06_py")
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
try:
|
|
# Note: if size is neither an int nor a list of length 2, an exception will raise
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop([512, 512, 375]),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
except TypeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Size should be a single integer" in str(e)
|
|
|
|
def test_random_crop_07_c():
|
|
"""
|
|
Test RandomCrop op with c_transforms:
|
|
padding_mode is Border.CONSTANT and fill_value is 255 (White),
|
|
expected to pass
|
|
"""
|
|
logger.info("test_random_crop_07_c")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The padding_mode is default as Border.CONSTANT and set filling color to be white.
|
|
random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], fill_value=(255, 255, 255))
|
|
decode_op = c_vision.Decode()
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_crop_op)
|
|
|
|
filename = "random_crop_07_c_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_07_py():
|
|
"""
|
|
Test RandomCrop op with py_transforms:
|
|
padding_mode is Border.CONSTANT and fill_value is 255 (White),
|
|
expected to pass
|
|
"""
|
|
logger.info("test_random_crop_07_py")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The padding_mode is default as Border.CONSTANT and set filling color to be white.
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop(512, [200, 200, 200, 200], fill_value=(255, 255, 255)),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
|
|
filename = "random_crop_07_py_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_08_c():
|
|
"""
|
|
Test RandomCrop op with c_transforms: padding_mode is Border.EDGE,
|
|
expected to pass
|
|
"""
|
|
logger.info("test_random_crop_08_c")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The padding_mode is Border.EDGE.
|
|
random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE)
|
|
decode_op = c_vision.Decode()
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_crop_op)
|
|
|
|
filename = "random_crop_08_c_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_08_py():
|
|
"""
|
|
Test RandomCrop op with py_transforms: padding_mode is Border.EDGE,
|
|
expected to pass
|
|
"""
|
|
logger.info("test_random_crop_08_py")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
# Note: The padding_mode is Border.EDGE.
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
|
|
filename = "random_crop_08_py_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_crop_09():
|
|
"""
|
|
Test RandomCrop op: invalid type of input image (not PIL), expected to raise TypeError
|
|
"""
|
|
logger.info("test_random_crop_09")
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.ToTensor(),
|
|
# Note: if input is not PIL image, TypeError will raise
|
|
py_vision.RandomCrop(512)
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
try:
|
|
data.create_dict_iterator(num_epochs=1).get_next()
|
|
except RuntimeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "should be PIL image" in str(e)
|
|
|
|
def test_random_crop_comp(plot=False):
|
|
"""
|
|
Test RandomCrop and compare between python and c image augmentation
|
|
"""
|
|
logger.info("Test RandomCrop with c_transform and py_transform comparison")
|
|
cropped_size = 512
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
random_crop_op = c_vision.RandomCrop(cropped_size)
|
|
decode_op = c_vision.Decode()
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomCrop(cropped_size),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data2 = data2.map(input_columns=["image"], operations=transform())
|
|
|
|
image_c_cropped = []
|
|
image_py_cropped = []
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)):
|
|
c_image = item1["image"]
|
|
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image_c_cropped.append(c_image)
|
|
image_py_cropped.append(py_image)
|
|
if plot:
|
|
visualize_list(image_c_cropped, image_py_cropped, visualize_mode=2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_random_crop_01_c()
|
|
test_random_crop_02_c()
|
|
test_random_crop_03_c()
|
|
test_random_crop_04_c()
|
|
test_random_crop_05_c()
|
|
test_random_crop_06_c()
|
|
test_random_crop_07_c()
|
|
test_random_crop_08_c()
|
|
test_random_crop_01_py()
|
|
test_random_crop_02_py()
|
|
test_random_crop_03_py()
|
|
test_random_crop_04_py()
|
|
test_random_crop_05_py()
|
|
test_random_crop_06_py()
|
|
test_random_crop_07_py()
|
|
test_random_crop_08_py()
|
|
test_random_crop_09()
|
|
test_random_crop_op_c(True)
|
|
test_random_crop_op_py(True)
|
|
test_random_crop_comp(True)
|