mindspore/tests/ut/python/dataset/test_graphdata.py

250 lines
8.3 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import random
import pytest
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
DATASET_FILE = "../data/mindrecord/testGraphData/testdata"
SOCIAL_DATA_FILE = "../data/mindrecord/testGraphData/sns"
def test_graphdata_getfullneighbor():
"""
Test get all neighbors
"""
logger.info('test get all neighbors.\n')
g = ds.GraphData(DATASET_FILE, 2)
nodes = g.get_all_nodes(1)
assert len(nodes) == 10
neighbor = g.get_all_neighbors(nodes, 2)
assert neighbor.shape == (10, 6)
row_tensor = g.get_node_feature(neighbor.tolist(), [2, 3])
assert row_tensor[0].shape == (10, 6)
def test_graphdata_getnodefeature_input_check():
"""
Test get node feature input check
"""
logger.info('test getnodefeature input check.\n')
g = ds.GraphData(DATASET_FILE)
with pytest.raises(TypeError):
input_list = [1, [1, 1]]
g.get_node_feature(input_list, [1])
with pytest.raises(TypeError):
input_list = [[1, 1], 1]
g.get_node_feature(input_list, [1])
with pytest.raises(TypeError):
input_list = [[1, 1], [1, 1, 1]]
g.get_node_feature(input_list, [1])
with pytest.raises(TypeError):
input_list = [[1, 1, 1], [1, 1]]
g.get_node_feature(input_list, [1])
with pytest.raises(TypeError):
input_list = [[1, 1], [1, [1, 1]]]
g.get_node_feature(input_list, [1])
with pytest.raises(TypeError):
input_list = [[1, 1], [[1, 1], 1]]
g.get_node_feature(input_list, [1])
with pytest.raises(TypeError):
input_list = [[1, 1], [1, 1]]
g.get_node_feature(input_list, 1)
with pytest.raises(TypeError):
input_list = [[1, 0.1], [1, 1]]
g.get_node_feature(input_list, 1)
with pytest.raises(TypeError):
input_list = np.array([[1, 0.1], [1, 1]])
g.get_node_feature(input_list, 1)
with pytest.raises(TypeError):
input_list = [[1, 1], [1, 1]]
g.get_node_feature(input_list, ["a"])
with pytest.raises(TypeError):
input_list = [[1, 1], [1, 1]]
g.get_node_feature(input_list, [1, "a"])
def test_graphdata_getsampledneighbors():
"""
Test sampled neighbors
"""
logger.info('test get sampled neighbors.\n')
g = ds.GraphData(DATASET_FILE, 1)
edges = g.get_all_edges(0)
nodes = g.get_nodes_from_edges(edges)
assert len(nodes) == 40
neighbor = g.get_sampled_neighbors(
np.unique(nodes[0:21, 0]), [2, 3], [2, 1])
assert neighbor.shape == (10, 9)
def test_graphdata_getnegsampledneighbors():
"""
Test neg sampled neighbors
"""
logger.info('test get negative sampled neighbors.\n')
g = ds.GraphData(DATASET_FILE, 2)
nodes = g.get_all_nodes(1)
assert len(nodes) == 10
neighbor = g.get_neg_sampled_neighbors(nodes, 5, 2)
assert neighbor.shape == (10, 6)
def test_graphdata_graphinfo():
"""
Test graph info
"""
logger.info('test graph info.\n')
g = ds.GraphData(DATASET_FILE, 2)
graph_info = g.graph_info()
assert graph_info['node_type'] == [1, 2]
assert graph_info['edge_type'] == [0]
assert graph_info['node_num'] == {1: 10, 2: 10}
assert graph_info['edge_num'] == {0: 40}
assert graph_info['node_feature_type'] == [1, 2, 3, 4]
assert graph_info['edge_feature_type'] == [1, 2]
class RandomBatchedSampler(ds.Sampler):
# RandomBatchedSampler generate random sequence without replacement in a batched manner
def __init__(self, index_range, num_edges_per_sample):
super().__init__()
self.index_range = index_range
self.num_edges_per_sample = num_edges_per_sample
def __iter__(self):
indices = [i+1 for i in range(self.index_range)]
# Reset random seed here if necessary
# random.seed(0)
random.shuffle(indices)
for i in range(0, self.index_range, self.num_edges_per_sample):
# Drop reminder
if i + self.num_edges_per_sample <= self.index_range:
yield indices[i: i + self.num_edges_per_sample]
class GNNGraphDataset():
def __init__(self, g, batch_num):
self.g = g
self.batch_num = batch_num
def __len__(self):
# Total sample size of GNN dataset
# In this case, the size should be total_num_edges/num_edges_per_sample
return self.g.graph_info()['edge_num'][0] // self.batch_num
def __getitem__(self, index):
# index will be a list of indices yielded from RandomBatchedSampler
# Fetch edges/nodes/samples/features based on indices
nodes = self.g.get_nodes_from_edges(index.astype(np.int32))
nodes = nodes[:, 0]
neg_nodes = self.g.get_neg_sampled_neighbors(
node_list=nodes, neg_neighbor_num=3, neg_neighbor_type=1)
nodes_neighbors = self.g.get_sampled_neighbors(node_list=nodes, neighbor_nums=[
2, 2], neighbor_types=[2, 1])
neg_nodes_neighbors = self.g.get_sampled_neighbors(
node_list=neg_nodes[:, 1:].reshape(-1), neighbor_nums=[2, 2], neighbor_types=[2, 2])
nodes_neighbors_features = self.g.get_node_feature(
node_list=nodes_neighbors, feature_types=[2, 3])
neg_neighbors_features = self.g.get_node_feature(
node_list=neg_nodes_neighbors, feature_types=[2, 3])
return nodes_neighbors, neg_nodes_neighbors, nodes_neighbors_features[0], neg_neighbors_features[1]
def test_graphdata_generatordataset():
"""
Test generator dataset
"""
logger.info('test generator dataset.\n')
g = ds.GraphData(DATASET_FILE)
batch_num = 2
edge_num = g.graph_info()['edge_num'][0]
out_column_names = ["neighbors", "neg_neighbors", "neighbors_features", "neg_neighbors_features"]
dataset = ds.GeneratorDataset(source=GNNGraphDataset(g, batch_num), column_names=out_column_names,
sampler=RandomBatchedSampler(edge_num, batch_num), num_parallel_workers=4)
dataset = dataset.repeat(2)
itr = dataset.create_dict_iterator(num_epochs=1)
i = 0
for data in itr:
assert data['neighbors'].shape == (2, 7)
assert data['neg_neighbors'].shape == (6, 7)
assert data['neighbors_features'].shape == (2, 7)
assert data['neg_neighbors_features'].shape == (6, 7)
i += 1
assert i == 40
def test_graphdata_randomwalkdefault():
"""
Test random walk defaults
"""
logger.info('test randomwalk with default parameters.\n')
g = ds.GraphData(SOCIAL_DATA_FILE, 1)
nodes = g.get_all_nodes(1)
assert len(nodes) == 33
meta_path = [1 for _ in range(39)]
walks = g.random_walk(nodes, meta_path)
assert walks.shape == (33, 40)
def test_graphdata_randomwalk():
"""
Test random walk
"""
logger.info('test random walk with given parameters.\n')
g = ds.GraphData(SOCIAL_DATA_FILE, 1)
nodes = g.get_all_nodes(1)
assert len(nodes) == 33
meta_path = [1 for _ in range(39)]
walks = g.random_walk(nodes, meta_path, 2.0, 0.5, -1)
assert walks.shape == (33, 40)
def test_graphdata_getedgefeature():
"""
Test get edge feature
"""
logger.info('test get_edge_feature.\n')
g = ds.GraphData(DATASET_FILE)
edges = g.get_all_edges(0)
features = g.get_edge_feature(edges, [1, 2])
assert features[0].shape == (40,)
assert features[1].shape == (40,)
if __name__ == '__main__':
test_graphdata_getfullneighbor()
test_graphdata_getnodefeature_input_check()
test_graphdata_getsampledneighbors()
test_graphdata_getnegsampledneighbors()
test_graphdata_graphinfo()
test_graphdata_generatordataset()
test_graphdata_randomwalkdefault()
test_graphdata_randomwalk()
test_graphdata_getedgefeature()