forked from mindspore-Ecosystem/mindspore
250 lines
8.3 KiB
Python
250 lines
8.3 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import random
|
|
import pytest
|
|
import numpy as np
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
|
|
DATASET_FILE = "../data/mindrecord/testGraphData/testdata"
|
|
SOCIAL_DATA_FILE = "../data/mindrecord/testGraphData/sns"
|
|
|
|
|
|
def test_graphdata_getfullneighbor():
|
|
"""
|
|
Test get all neighbors
|
|
"""
|
|
logger.info('test get all neighbors.\n')
|
|
g = ds.GraphData(DATASET_FILE, 2)
|
|
nodes = g.get_all_nodes(1)
|
|
assert len(nodes) == 10
|
|
neighbor = g.get_all_neighbors(nodes, 2)
|
|
assert neighbor.shape == (10, 6)
|
|
row_tensor = g.get_node_feature(neighbor.tolist(), [2, 3])
|
|
assert row_tensor[0].shape == (10, 6)
|
|
|
|
|
|
def test_graphdata_getnodefeature_input_check():
|
|
"""
|
|
Test get node feature input check
|
|
"""
|
|
logger.info('test getnodefeature input check.\n')
|
|
g = ds.GraphData(DATASET_FILE)
|
|
with pytest.raises(TypeError):
|
|
input_list = [1, [1, 1]]
|
|
g.get_node_feature(input_list, [1])
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 1], 1]
|
|
g.get_node_feature(input_list, [1])
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 1], [1, 1, 1]]
|
|
g.get_node_feature(input_list, [1])
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 1, 1], [1, 1]]
|
|
g.get_node_feature(input_list, [1])
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 1], [1, [1, 1]]]
|
|
g.get_node_feature(input_list, [1])
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 1], [[1, 1], 1]]
|
|
g.get_node_feature(input_list, [1])
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 1], [1, 1]]
|
|
g.get_node_feature(input_list, 1)
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 0.1], [1, 1]]
|
|
g.get_node_feature(input_list, 1)
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = np.array([[1, 0.1], [1, 1]])
|
|
g.get_node_feature(input_list, 1)
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 1], [1, 1]]
|
|
g.get_node_feature(input_list, ["a"])
|
|
|
|
with pytest.raises(TypeError):
|
|
input_list = [[1, 1], [1, 1]]
|
|
g.get_node_feature(input_list, [1, "a"])
|
|
|
|
|
|
def test_graphdata_getsampledneighbors():
|
|
"""
|
|
Test sampled neighbors
|
|
"""
|
|
logger.info('test get sampled neighbors.\n')
|
|
g = ds.GraphData(DATASET_FILE, 1)
|
|
edges = g.get_all_edges(0)
|
|
nodes = g.get_nodes_from_edges(edges)
|
|
assert len(nodes) == 40
|
|
neighbor = g.get_sampled_neighbors(
|
|
np.unique(nodes[0:21, 0]), [2, 3], [2, 1])
|
|
assert neighbor.shape == (10, 9)
|
|
|
|
|
|
def test_graphdata_getnegsampledneighbors():
|
|
"""
|
|
Test neg sampled neighbors
|
|
"""
|
|
logger.info('test get negative sampled neighbors.\n')
|
|
g = ds.GraphData(DATASET_FILE, 2)
|
|
nodes = g.get_all_nodes(1)
|
|
assert len(nodes) == 10
|
|
neighbor = g.get_neg_sampled_neighbors(nodes, 5, 2)
|
|
assert neighbor.shape == (10, 6)
|
|
|
|
|
|
def test_graphdata_graphinfo():
|
|
"""
|
|
Test graph info
|
|
"""
|
|
logger.info('test graph info.\n')
|
|
g = ds.GraphData(DATASET_FILE, 2)
|
|
graph_info = g.graph_info()
|
|
assert graph_info['node_type'] == [1, 2]
|
|
assert graph_info['edge_type'] == [0]
|
|
assert graph_info['node_num'] == {1: 10, 2: 10}
|
|
assert graph_info['edge_num'] == {0: 40}
|
|
assert graph_info['node_feature_type'] == [1, 2, 3, 4]
|
|
assert graph_info['edge_feature_type'] == [1, 2]
|
|
|
|
|
|
class RandomBatchedSampler(ds.Sampler):
|
|
# RandomBatchedSampler generate random sequence without replacement in a batched manner
|
|
def __init__(self, index_range, num_edges_per_sample):
|
|
super().__init__()
|
|
self.index_range = index_range
|
|
self.num_edges_per_sample = num_edges_per_sample
|
|
|
|
def __iter__(self):
|
|
indices = [i+1 for i in range(self.index_range)]
|
|
# Reset random seed here if necessary
|
|
# random.seed(0)
|
|
random.shuffle(indices)
|
|
for i in range(0, self.index_range, self.num_edges_per_sample):
|
|
# Drop reminder
|
|
if i + self.num_edges_per_sample <= self.index_range:
|
|
yield indices[i: i + self.num_edges_per_sample]
|
|
|
|
|
|
class GNNGraphDataset():
|
|
def __init__(self, g, batch_num):
|
|
self.g = g
|
|
self.batch_num = batch_num
|
|
|
|
def __len__(self):
|
|
# Total sample size of GNN dataset
|
|
# In this case, the size should be total_num_edges/num_edges_per_sample
|
|
return self.g.graph_info()['edge_num'][0] // self.batch_num
|
|
|
|
def __getitem__(self, index):
|
|
# index will be a list of indices yielded from RandomBatchedSampler
|
|
# Fetch edges/nodes/samples/features based on indices
|
|
nodes = self.g.get_nodes_from_edges(index.astype(np.int32))
|
|
nodes = nodes[:, 0]
|
|
neg_nodes = self.g.get_neg_sampled_neighbors(
|
|
node_list=nodes, neg_neighbor_num=3, neg_neighbor_type=1)
|
|
nodes_neighbors = self.g.get_sampled_neighbors(node_list=nodes, neighbor_nums=[
|
|
2, 2], neighbor_types=[2, 1])
|
|
neg_nodes_neighbors = self.g.get_sampled_neighbors(
|
|
node_list=neg_nodes[:, 1:].reshape(-1), neighbor_nums=[2, 2], neighbor_types=[2, 2])
|
|
nodes_neighbors_features = self.g.get_node_feature(
|
|
node_list=nodes_neighbors, feature_types=[2, 3])
|
|
neg_neighbors_features = self.g.get_node_feature(
|
|
node_list=neg_nodes_neighbors, feature_types=[2, 3])
|
|
return nodes_neighbors, neg_nodes_neighbors, nodes_neighbors_features[0], neg_neighbors_features[1]
|
|
|
|
|
|
def test_graphdata_generatordataset():
|
|
"""
|
|
Test generator dataset
|
|
"""
|
|
logger.info('test generator dataset.\n')
|
|
g = ds.GraphData(DATASET_FILE)
|
|
batch_num = 2
|
|
edge_num = g.graph_info()['edge_num'][0]
|
|
out_column_names = ["neighbors", "neg_neighbors", "neighbors_features", "neg_neighbors_features"]
|
|
dataset = ds.GeneratorDataset(source=GNNGraphDataset(g, batch_num), column_names=out_column_names,
|
|
sampler=RandomBatchedSampler(edge_num, batch_num), num_parallel_workers=4)
|
|
dataset = dataset.repeat(2)
|
|
itr = dataset.create_dict_iterator(num_epochs=1)
|
|
i = 0
|
|
for data in itr:
|
|
assert data['neighbors'].shape == (2, 7)
|
|
assert data['neg_neighbors'].shape == (6, 7)
|
|
assert data['neighbors_features'].shape == (2, 7)
|
|
assert data['neg_neighbors_features'].shape == (6, 7)
|
|
i += 1
|
|
assert i == 40
|
|
|
|
|
|
def test_graphdata_randomwalkdefault():
|
|
"""
|
|
Test random walk defaults
|
|
"""
|
|
logger.info('test randomwalk with default parameters.\n')
|
|
g = ds.GraphData(SOCIAL_DATA_FILE, 1)
|
|
nodes = g.get_all_nodes(1)
|
|
assert len(nodes) == 33
|
|
|
|
meta_path = [1 for _ in range(39)]
|
|
walks = g.random_walk(nodes, meta_path)
|
|
assert walks.shape == (33, 40)
|
|
|
|
|
|
def test_graphdata_randomwalk():
|
|
"""
|
|
Test random walk
|
|
"""
|
|
logger.info('test random walk with given parameters.\n')
|
|
g = ds.GraphData(SOCIAL_DATA_FILE, 1)
|
|
nodes = g.get_all_nodes(1)
|
|
assert len(nodes) == 33
|
|
|
|
meta_path = [1 for _ in range(39)]
|
|
walks = g.random_walk(nodes, meta_path, 2.0, 0.5, -1)
|
|
assert walks.shape == (33, 40)
|
|
|
|
|
|
def test_graphdata_getedgefeature():
|
|
"""
|
|
Test get edge feature
|
|
"""
|
|
logger.info('test get_edge_feature.\n')
|
|
g = ds.GraphData(DATASET_FILE)
|
|
edges = g.get_all_edges(0)
|
|
features = g.get_edge_feature(edges, [1, 2])
|
|
assert features[0].shape == (40,)
|
|
assert features[1].shape == (40,)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_graphdata_getfullneighbor()
|
|
test_graphdata_getnodefeature_input_check()
|
|
test_graphdata_getsampledneighbors()
|
|
test_graphdata_getnegsampledneighbors()
|
|
test_graphdata_graphinfo()
|
|
test_graphdata_generatordataset()
|
|
test_graphdata_randomwalkdefault()
|
|
test_graphdata_randomwalk()
|
|
test_graphdata_getedgefeature()
|