mindspore/tests/ut/python/dataset/test_cutmix_batch_op.py

455 lines
16 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the CutMixBatch op in DE
"""
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
import mindspore.dataset.transforms.c_transforms as data_trans
import mindspore.dataset.transforms.vision.utils as mode
from mindspore import log as logger
from util import save_and_check_md5, diff_mse, visualize_list, config_get_set_seed, \
config_get_set_num_parallel_workers
DATA_DIR = "../data/dataset/testCifar10Data"
DATA_DIR2 = "../data/dataset/testImageNetData2/train/"
DATA_DIR3 = "../data/dataset/testCelebAData/"
GENERATE_GOLDEN = False
def test_cutmix_batch_success1(plot=False):
"""
Test CutMixBatch op with specified alpha and prob parameters on a batch of CHW images
"""
logger.info("test_cutmix_batch_success1")
# Original Images
ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
ds_original = ds_original.batch(5, drop_remainder=True)
images_original = None
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = image
else:
images_original = np.append(images_original, image, axis=0)
# CutMix Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
hwc2chw_op = vision.HWC2CHW()
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NCHW, 2.0, 0.5)
data1 = data1.batch(5, drop_remainder=True)
data1 = data1.map(input_columns=["image", "label"], operations=cutmix_batch_op)
images_cutmix = None
for idx, (image, _) in enumerate(data1):
if idx == 0:
images_cutmix = image.transpose(0, 2, 3, 1)
else:
images_cutmix = np.append(images_cutmix, image.transpose(0, 2, 3, 1), axis=0)
if plot:
visualize_list(images_original, images_cutmix)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_cutmix[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
def test_cutmix_batch_success2(plot=False):
"""
Test CutMixBatch op with default values for alpha and prob on a batch of rescaled HWC images
"""
logger.info("test_cutmix_batch_success2")
# Original Images
ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
ds_original = ds_original.batch(5, drop_remainder=True)
images_original = None
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = image
else:
images_original = np.append(images_original, image, axis=0)
# CutMix Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
rescale_op = vision.Rescale((1.0/255.0), 0.0)
data1 = data1.map(input_columns=["image"], operations=rescale_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC)
data1 = data1.batch(5, drop_remainder=True)
data1 = data1.map(input_columns=["image", "label"], operations=cutmix_batch_op)
images_cutmix = None
for idx, (image, _) in enumerate(data1):
if idx == 0:
images_cutmix = image
else:
images_cutmix = np.append(images_cutmix, image, axis=0)
if plot:
visualize_list(images_original, images_cutmix)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_cutmix[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
def test_cutmix_batch_success3(plot=False):
"""
Test CutMixBatch op with default values for alpha and prob on a batch of HWC images on ImageFolderDatasetV2
"""
logger.info("test_cutmix_batch_success3")
ds_original = ds.ImageFolderDatasetV2(dataset_dir=DATA_DIR2, shuffle=False)
decode_op = vision.Decode()
ds_original = ds_original.map(input_columns=["image"], operations=[decode_op])
ds_original = ds_original.batch(4, pad_info={}, drop_remainder=True)
images_original = None
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = image
else:
images_original = np.append(images_original, image, axis=0)
# CutMix Images
data1 = ds.ImageFolderDatasetV2(dataset_dir=DATA_DIR2, shuffle=False)
decode_op = vision.Decode()
data1 = data1.map(input_columns=["image"], operations=[decode_op])
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC)
data1 = data1.batch(4, pad_info={}, drop_remainder=True)
data1 = data1.map(input_columns=["image", "label"], operations=cutmix_batch_op)
images_cutmix = None
for idx, (image, _) in enumerate(data1):
if idx == 0:
images_cutmix = image
else:
images_cutmix = np.append(images_cutmix, image, axis=0)
if plot:
visualize_list(images_original, images_cutmix)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_cutmix[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
def test_cutmix_batch_success4(plot=False):
"""
Test CutMixBatch on a dataset where OneHot returns a 2D vector
"""
logger.info("test_cutmix_batch_success4")
ds_original = ds.CelebADataset(DATA_DIR3, shuffle=False)
decode_op = vision.Decode()
ds_original = ds_original.map(input_columns=["image"], operations=[decode_op])
ds_original = ds_original.batch(2, drop_remainder=True)
images_original = None
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = image
else:
images_original = np.append(images_original, image, axis=0)
# CutMix Images
data1 = ds.CelebADataset(dataset_dir=DATA_DIR3, shuffle=False)
decode_op = vision.Decode()
data1 = data1.map(input_columns=["image"], operations=[decode_op])
one_hot_op = data_trans.OneHot(num_classes=100)
data1 = data1.map(input_columns=["attr"], operations=one_hot_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC, 0.5, 0.9)
data1 = data1.batch(2, drop_remainder=True)
data1 = data1.map(input_columns=["image", "attr"], operations=cutmix_batch_op)
images_cutmix = None
for idx, (image, _) in enumerate(data1):
if idx == 0:
images_cutmix = image
else:
images_cutmix = np.append(images_cutmix, image, axis=0)
if plot:
visualize_list(images_original, images_cutmix)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_cutmix[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
def test_cutmix_batch_nhwc_md5():
"""
Test CutMixBatch on a batch of HWC images with MD5:
"""
logger.info("test_cutmix_batch_nhwc_md5")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# CutMixBatch Images
data = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data = data.map(input_columns=["label"], operations=one_hot_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC)
data = data.batch(5, drop_remainder=True)
data = data.map(input_columns=["image", "label"], operations=cutmix_batch_op)
filename = "cutmix_batch_c_nhwc_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_cutmix_batch_nchw_md5():
"""
Test CutMixBatch on a batch of CHW images with MD5:
"""
logger.info("test_cutmix_batch_nchw_md5")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# CutMixBatch Images
data = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
hwc2chw_op = vision.HWC2CHW()
data = data.map(input_columns=["image"], operations=hwc2chw_op)
one_hot_op = data_trans.OneHot(num_classes=10)
data = data.map(input_columns=["label"], operations=one_hot_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NCHW)
data = data.batch(5, drop_remainder=True)
data = data.map(input_columns=["image", "label"], operations=cutmix_batch_op)
filename = "cutmix_batch_c_nchw_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_cutmix_batch_fail1():
"""
Test CutMixBatch Fail 1
We expect this to fail because the images and labels are not batched
"""
logger.info("test_cutmix_batch_fail1")
# CutMixBatch Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC)
with pytest.raises(RuntimeError) as error:
data1 = data1.map(input_columns=["image", "label"], operations=cutmix_batch_op)
for idx, (image, _) in enumerate(data1):
if idx == 0:
images_cutmix = image
else:
images_cutmix = np.append(images_cutmix, image, axis=0)
error_message = "You must make sure images are HWC or CHW and batch "
assert error_message in str(error.value)
def test_cutmix_batch_fail2():
"""
Test CutMixBatch Fail 2
We expect this to fail because alpha is negative
"""
logger.info("test_cutmix_batch_fail2")
# CutMixBatch Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
with pytest.raises(ValueError) as error:
vision.CutMixBatch(mode.ImageBatchFormat.NHWC, -1)
error_message = "Input is not within the required interval"
assert error_message in str(error.value)
def test_cutmix_batch_fail3():
"""
Test CutMixBatch Fail 2
We expect this to fail because prob is larger than 1
"""
logger.info("test_cutmix_batch_fail3")
# CutMixBatch Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
with pytest.raises(ValueError) as error:
vision.CutMixBatch(mode.ImageBatchFormat.NHWC, 1, 2)
error_message = "Input is not within the required interval"
assert error_message in str(error.value)
def test_cutmix_batch_fail4():
"""
Test CutMixBatch Fail 2
We expect this to fail because prob is negative
"""
logger.info("test_cutmix_batch_fail4")
# CutMixBatch Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
with pytest.raises(ValueError) as error:
vision.CutMixBatch(mode.ImageBatchFormat.NHWC, 1, -1)
error_message = "Input is not within the required interval"
assert error_message in str(error.value)
def test_cutmix_batch_fail5():
"""
Test CutMixBatch op
We expect this to fail because label column is not passed to cutmix_batch
"""
logger.info("test_cutmix_batch_fail5")
# CutMixBatch Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC)
data1 = data1.batch(5, drop_remainder=True)
data1 = data1.map(input_columns=["image"], operations=cutmix_batch_op)
with pytest.raises(RuntimeError) as error:
images_cutmix = np.array([])
for idx, (image, _) in enumerate(data1):
if idx == 0:
images_cutmix = image
else:
images_cutmix = np.append(images_cutmix, image, axis=0)
error_message = "Both images and labels columns are required"
assert error_message in str(error.value)
def test_cutmix_batch_fail6():
"""
Test CutMixBatch op
We expect this to fail because image_batch_format passed to CutMixBatch doesn't match the format of the images
"""
logger.info("test_cutmix_batch_fail6")
# CutMixBatch Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NCHW)
data1 = data1.batch(5, drop_remainder=True)
data1 = data1.map(input_columns=["image", "label"], operations=cutmix_batch_op)
with pytest.raises(RuntimeError) as error:
images_cutmix = np.array([])
for idx, (image, _) in enumerate(data1):
if idx == 0:
images_cutmix = image
else:
images_cutmix = np.append(images_cutmix, image, axis=0)
error_message = "CutMixBatch: Image doesn't match the given image format."
assert error_message in str(error.value)
def test_cutmix_batch_fail7():
"""
Test CutMixBatch op
We expect this to fail because labels are not in one-hot format
"""
logger.info("test_cutmix_batch_fail7")
# CutMixBatch Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC)
data1 = data1.batch(5, drop_remainder=True)
data1 = data1.map(input_columns=["image", "label"], operations=cutmix_batch_op)
with pytest.raises(RuntimeError) as error:
images_cutmix = np.array([])
for idx, (image, _) in enumerate(data1):
if idx == 0:
images_cutmix = image
else:
images_cutmix = np.append(images_cutmix, image, axis=0)
error_message = "CutMixBatch: Wrong labels shape. The second column (labels) must have a shape of NC or NLC"
assert error_message in str(error.value)
def test_cutmix_batch_fail8():
"""
Test CutMixBatch Fail 8
We expect this to fail because alpha is zero
"""
logger.info("test_cutmix_batch_fail8")
# CutMixBatch Images
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
with pytest.raises(ValueError) as error:
vision.CutMixBatch(mode.ImageBatchFormat.NHWC, 0.0)
error_message = "Input is not within the required interval"
assert error_message in str(error.value)
if __name__ == "__main__":
test_cutmix_batch_success1(plot=True)
test_cutmix_batch_success2(plot=True)
test_cutmix_batch_success3(plot=True)
test_cutmix_batch_success4(plot=True)
test_cutmix_batch_nchw_md5()
test_cutmix_batch_nhwc_md5()
test_cutmix_batch_fail1()
test_cutmix_batch_fail2()
test_cutmix_batch_fail3()
test_cutmix_batch_fail4()
test_cutmix_batch_fail5()
test_cutmix_batch_fail6()
test_cutmix_batch_fail7()
test_cutmix_batch_fail8()