forked from mindspore-Ecosystem/mindspore
140 lines
6.9 KiB
Python
140 lines
6.9 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
# ==============================================================================
|
||
"""
|
||
Testing BasicTokenizer op in DE
|
||
"""
|
||
import numpy as np
|
||
import mindspore.dataset as ds
|
||
from mindspore import log as logger
|
||
import mindspore.dataset.text as text
|
||
|
||
BASIC_TOKENIZER_FILE = "../data/dataset/testTokenizerData/basic_tokenizer.txt"
|
||
|
||
test_paras = [
|
||
dict(
|
||
first=1,
|
||
last=6,
|
||
expected_tokens=
|
||
[['Welcome', 'to', 'Beijing', '北', '京', '欢', '迎', '您'],
|
||
['長', '風', '破', '浪', '會', '有', '時', ',', '直', '掛', '雲', '帆', '濟', '滄', '海'],
|
||
['😀', '嘿', '嘿', '😃', '哈', '哈', '😄', '大', '笑', '😁', '嘻', '嘻'],
|
||
['明', '朝', '(', '1368', '—', '1644', '年', ')', '和', '清', '朝',
|
||
'(', '1644', '—', '1911', '年', ')', ',', '是', '中', '国', '封',
|
||
'建', '王', '朝', '史', '上', '最', '后', '两', '个', '朝', '代'],
|
||
['明', '代', '(', '1368', '-', '1644', ')', 'と', '清', '代',
|
||
'(', '1644', '-', '1911', ')', 'は', '、', '中', '国', 'の', '封',
|
||
'建', '王', '朝', 'の', '歴', '史', 'における', '最', '後', 'の2つの', '王', '朝', 'でした'],
|
||
['명나라', '(', '1368', '-', '1644', ')', '와', '청나라', '(', '1644', '-', '1911', ')', '는',
|
||
'중국', '봉건', '왕조의', '역사에서', '마지막', '두', '왕조였다']],
|
||
expected_offsets_start=[[0, 8, 11, 18, 21, 24, 27, 30],
|
||
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42],
|
||
[0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37],
|
||
[0, 3, 6, 9, 13, 16, 20, 23, 26, 29, 32, 35, 38, 42, 45, 49,
|
||
52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100],
|
||
[0, 3, 6, 9, 13, 14, 18, 21, 24, 27, 30, 33, 37, 38, 42, 45, 48, 51,
|
||
54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 93, 96, 99, 109, 112, 115],
|
||
[0, 10, 11, 15, 16, 20, 21, 25, 35, 36, 40, 41, 45, 46, 50, 57, 64, 74, 87, 97, 101]],
|
||
expected_offsets_limit=[[7, 10, 18, 21, 24, 27, 30, 33],
|
||
[3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45],
|
||
[4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40],
|
||
[3, 6, 9, 13, 16, 20, 23, 26, 29, 32, 35, 38, 42, 45, 49, 52, 55, 58,
|
||
61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103],
|
||
[3, 6, 9, 13, 14, 18, 21, 24, 27, 30, 33, 37, 38, 42, 45, 48, 51, 54,
|
||
57, 60, 63, 66, 69, 72, 75, 78, 81, 93, 96, 99, 109, 112, 115, 124],
|
||
[9, 11, 15, 16, 20, 21, 24, 34, 36, 40, 41, 45, 46, 49, 56, 63, 73, 86, 96, 100, 113]]
|
||
),
|
||
dict(
|
||
first=7,
|
||
last=7,
|
||
expected_tokens=[['this', 'is', 'a', 'funky', 'string']],
|
||
expected_offsets_start=[[0, 5, 8, 10, 16]],
|
||
expected_offsets_limit=[[4, 7, 9, 15, 22]],
|
||
lower_case=True
|
||
),
|
||
]
|
||
|
||
|
||
def check_basic_tokenizer_default(first, last, expected_tokens, expected_offsets_start, expected_offsets_limit,
|
||
lower_case=False, keep_whitespace=False,
|
||
normalization_form=text.utils.NormalizeForm.NONE, preserve_unused_token=False):
|
||
dataset = ds.TextFileDataset(BASIC_TOKENIZER_FILE, shuffle=False)
|
||
if first > 1:
|
||
dataset = dataset.skip(first - 1)
|
||
if last >= first:
|
||
dataset = dataset.take(last - first + 1)
|
||
|
||
basic_tokenizer = text.BasicTokenizer(lower_case=lower_case,
|
||
keep_whitespace=keep_whitespace,
|
||
normalization_form=normalization_form,
|
||
preserve_unused_token=preserve_unused_token)
|
||
|
||
dataset = dataset.map(operations=basic_tokenizer)
|
||
count = 0
|
||
for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||
token = text.to_str(i['text'])
|
||
logger.info("Out:", token)
|
||
logger.info("Exp:", expected_tokens[count])
|
||
np.testing.assert_array_equal(token, expected_tokens[count])
|
||
count = count + 1
|
||
|
||
|
||
def check_basic_tokenizer_with_offsets(first, last, expected_tokens, expected_offsets_start, expected_offsets_limit,
|
||
lower_case=False, keep_whitespace=False,
|
||
normalization_form=text.utils.NormalizeForm.NONE, preserve_unused_token=False):
|
||
dataset = ds.TextFileDataset(BASIC_TOKENIZER_FILE, shuffle=False)
|
||
if first > 1:
|
||
dataset = dataset.skip(first - 1)
|
||
if last >= first:
|
||
dataset = dataset.take(last - first + 1)
|
||
|
||
basic_tokenizer = text.BasicTokenizer(lower_case=lower_case,
|
||
keep_whitespace=keep_whitespace,
|
||
normalization_form=normalization_form,
|
||
preserve_unused_token=preserve_unused_token,
|
||
with_offsets=True)
|
||
|
||
dataset = dataset.map(operations=basic_tokenizer, input_columns=['text'],
|
||
output_columns=['token', 'offsets_start', 'offsets_limit'],
|
||
column_order=['token', 'offsets_start', 'offsets_limit'])
|
||
count = 0
|
||
for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||
token = text.to_str(i['token'])
|
||
logger.info("Out:", token)
|
||
logger.info("Exp:", expected_tokens[count])
|
||
np.testing.assert_array_equal(token, expected_tokens[count])
|
||
np.testing.assert_array_equal(i['offsets_start'], expected_offsets_start[count])
|
||
np.testing.assert_array_equal(i['offsets_limit'], expected_offsets_limit[count])
|
||
count = count + 1
|
||
|
||
def test_basic_tokenizer_with_offsets():
|
||
"""
|
||
Test BasicTokenizer
|
||
"""
|
||
for paras in test_paras:
|
||
check_basic_tokenizer_with_offsets(**paras)
|
||
|
||
|
||
def test_basic_tokenizer_default():
|
||
"""
|
||
Test BasicTokenizer
|
||
"""
|
||
for paras in test_paras:
|
||
check_basic_tokenizer_default(**paras)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
test_basic_tokenizer_default()
|
||
test_basic_tokenizer_with_offsets()
|