mindspore/tests/ut/python/dataset/test_mixup_label_smoothing.py

167 lines
5.9 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as c
import mindspore.dataset.transforms.py_transforms as f
import mindspore.dataset.vision.c_transforms as c_vision
import mindspore.dataset.vision.py_transforms as py_vision
from mindspore import log as logger
DATA_DIR = "../data/dataset/testImageNetData/train"
DATA_DIR_2 = "../data/dataset/testImageNetData2/train"
def test_one_hot_op():
"""
Test one hot encoding op
"""
logger.info("Test one hot encoding op")
# define map operations
# ds = de.ImageFolderDataset(DATA_DIR, schema=SCHEMA_DIR)
dataset = ds.ImageFolderDataset(DATA_DIR)
num_classes = 2
epsilon_para = 0.1
transforms = [f.OneHotOp(num_classes=num_classes, smoothing_rate=epsilon_para)]
transform_label = f.Compose(transforms)
dataset = dataset.map(operations=transform_label, input_columns=["label"])
golden_label = np.ones(num_classes) * epsilon_para / num_classes
golden_label[1] = 1 - epsilon_para / num_classes
for data in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
label = data["label"]
logger.info("label is {}".format(label))
logger.info("golden_label is {}".format(golden_label))
assert label.all() == golden_label.all()
logger.info("====test one hot op ok====")
def test_mix_up_single():
"""
Test single batch mix up op
"""
logger.info("Test single batch mix up op")
resize_height = 224
resize_width = 224
# Create dataset and define map operations
ds1 = ds.ImageFolderDataset(DATA_DIR_2)
num_classes = 10
decode_op = c_vision.Decode()
resize_op = c_vision.Resize((resize_height, resize_width), c_vision.Inter.LINEAR)
one_hot_encode = c.OneHot(num_classes) # num_classes is input argument
ds1 = ds1.map(operations=decode_op, input_columns=["image"])
ds1 = ds1.map(operations=resize_op, input_columns=["image"])
ds1 = ds1.map(operations=one_hot_encode, input_columns=["label"])
# apply batch operations
batch_size = 3
ds1 = ds1.batch(batch_size, drop_remainder=True)
ds2 = ds1
alpha = 0.2
transforms = [py_vision.MixUp(batch_size=batch_size, alpha=alpha, is_single=True)
]
ds1 = ds1.map(operations=transforms, input_columns=["image", "label"])
for data1, data2 in zip(ds1.create_dict_iterator(num_epochs=1, output_numpy=True),
ds2.create_dict_iterator(num_epochs=1, output_numpy=True)):
image1 = data1["image"]
label = data1["label"]
logger.info("label is {}".format(label))
image2 = data2["image"]
label2 = data2["label"]
logger.info("label2 is {}".format(label2))
lam = np.abs(label - label2)
for index in range(batch_size - 1):
if np.square(lam[index]).mean() != 0:
lam_value = 1 - np.sum(lam[index]) / 2
img_golden = lam_value * image2[index] + (1 - lam_value) * image2[index + 1]
assert image1[index].all() == img_golden.all()
logger.info("====test single batch mixup ok====")
def test_mix_up_multi():
"""
Test multi batch mix up op
"""
logger.info("Test several batch mix up op")
resize_height = 224
resize_width = 224
# Create dataset and define map operations
ds1 = ds.ImageFolderDataset(DATA_DIR_2)
num_classes = 3
decode_op = c_vision.Decode()
resize_op = c_vision.Resize((resize_height, resize_width), c_vision.Inter.LINEAR)
one_hot_encode = c.OneHot(num_classes) # num_classes is input argument
ds1 = ds1.map(operations=decode_op, input_columns=["image"])
ds1 = ds1.map(operations=resize_op, input_columns=["image"])
ds1 = ds1.map(operations=one_hot_encode, input_columns=["label"])
# apply batch operations
batch_size = 3
ds1 = ds1.batch(batch_size, drop_remainder=True)
ds2 = ds1
alpha = 0.2
transforms = [py_vision.MixUp(batch_size=batch_size, alpha=alpha, is_single=False)
]
ds1 = ds1.map(operations=transforms, input_columns=["image", "label"])
num_iter = 0
batch1_image1 = 0
for data1, data2 in zip(ds1.create_dict_iterator(num_epochs=1, output_numpy=True),
ds2.create_dict_iterator(num_epochs=1, output_numpy=True)):
image1 = data1["image"]
label1 = data1["label"]
logger.info("label: {}".format(label1))
image2 = data2["image"]
label2 = data2["label"]
logger.info("label2: {}".format(label2))
if num_iter == 0:
batch1_image1 = image1
if num_iter == 1:
lam = np.abs(label2 - label1)
logger.info("lam value in multi: {}".format(lam))
for index in range(batch_size):
if np.square(lam[index]).mean() != 0:
lam_value = 1 - np.sum(lam[index]) / 2
img_golden = lam_value * image2[index] + (1 - lam_value) * batch1_image1[index]
assert image1[index].all() == img_golden.all()
logger.info("====test several batch mixup ok====")
break
num_iter += 1
if __name__ == "__main__":
test_one_hot_op()
test_mix_up_single()
test_mix_up_multi()