forked from mindspore-Ecosystem/mindspore
816 lines
36 KiB
Python
816 lines
36 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
This is the test module for mindrecord
|
|
"""
|
|
import os
|
|
import pytest
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
from mindspore.dataset.text import to_str
|
|
from mindspore.mindrecord import FileWriter
|
|
|
|
FILES_NUM = 4
|
|
CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
|
|
CV_DIR_NAME = "../data/mindrecord/testImageNetData"
|
|
|
|
|
|
@pytest.fixture
|
|
def add_and_remove_cv_file():
|
|
"""add/remove cv file"""
|
|
paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
|
|
for x in range(FILES_NUM)]
|
|
try:
|
|
for x in paths:
|
|
if os.path.exists("{}".format(x)):
|
|
os.remove("{}".format(x))
|
|
if os.path.exists("{}.db".format(x)):
|
|
os.remove("{}.db".format(x))
|
|
writer = FileWriter(CV_FILE_NAME, FILES_NUM)
|
|
data = get_data(CV_DIR_NAME, True)
|
|
cv_schema_json = {"id": {"type": "int32"},
|
|
"file_name": {"type": "string"},
|
|
"label": {"type": "int32"},
|
|
"data": {"type": "bytes"}}
|
|
writer.add_schema(cv_schema_json, "img_schema")
|
|
writer.add_index(["file_name", "label"])
|
|
writer.write_raw_data(data)
|
|
writer.commit()
|
|
yield "yield_cv_data"
|
|
except Exception as error:
|
|
for x in paths:
|
|
os.remove("{}".format(x))
|
|
os.remove("{}.db".format(x))
|
|
raise error
|
|
else:
|
|
for x in paths:
|
|
os.remove("{}".format(x))
|
|
os.remove("{}.db".format(x))
|
|
|
|
|
|
def test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
num_readers = 4
|
|
sampler = ds.PKSampler(2)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", None, num_readers,
|
|
sampler=sampler)
|
|
|
|
assert data_set.get_dataset_size() == 6
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info("-------------- item[file_name]: \
|
|
{}------------------------".format(to_str(item["file_name"])))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
|
|
|
|
def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.PKSampler(2)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
|
|
assert data_set.get_dataset_size() == 6
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info("-------------- item[data]: \
|
|
{}------------------------".format(item["data"][:10]))
|
|
logger.info("-------------- item[file_name]: \
|
|
{}------------------------".format(to_str(item["file_name"])))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
|
|
|
|
def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.PKSampler(3, None, True)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
|
|
assert data_set.get_dataset_size() == 9
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info("-------------- item[file_name]: \
|
|
{}------------------------".format(to_str(item["file_name"])))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 9
|
|
|
|
|
|
def test_cv_minddataset_pk_sample_shuffle_1(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.PKSampler(3, None, True, 'label', 5)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
|
|
assert data_set.get_dataset_size() == 5
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info("-------------- item[file_name]: \
|
|
{}------------------------".format(to_str(item["file_name"])))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 5
|
|
|
|
|
|
def test_cv_minddataset_pk_sample_shuffle_2(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.PKSampler(3, None, True, 'label', 10)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
|
|
assert data_set.get_dataset_size() == 9
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info("-------------- item[file_name]: \
|
|
{}------------------------".format(to_str(item["file_name"])))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 9
|
|
|
|
|
|
def test_cv_minddataset_pk_sample_out_of_range_0(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.PKSampler(5, None, True)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 15
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info("-------------- item[file_name]: \
|
|
{}------------------------".format(to_str(item["file_name"])))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 15
|
|
|
|
|
|
def test_cv_minddataset_pk_sample_out_of_range_1(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.PKSampler(5, None, True, 'label', 20)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 15
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info("-------------- item[file_name]: \
|
|
{}------------------------".format(to_str(item["file_name"])))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 15
|
|
|
|
|
|
def test_cv_minddataset_pk_sample_out_of_range_2(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.PKSampler(5, None, True, 'label', 10)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 10
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info("-------------- item[file_name]: \
|
|
{}------------------------".format(to_str(item["file_name"])))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 10
|
|
|
|
|
|
def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
indices = [1, 2, 3, 5, 7]
|
|
samplers = (ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices))
|
|
for sampler in samplers:
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 5
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 5
|
|
|
|
|
|
def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
indices = [1, 2, 2, 5, 7, 9]
|
|
samplers = ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices)
|
|
for sampler in samplers:
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 6
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 6
|
|
|
|
|
|
def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
indices = []
|
|
samplers = ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices)
|
|
for sampler in samplers:
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 0
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 0
|
|
|
|
|
|
def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file):
|
|
"""tutorial for cv minderdataset."""
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
indices = [1, 2, 4, 11, 13]
|
|
samplers = ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices)
|
|
for sampler in samplers:
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 5
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 5
|
|
|
|
|
|
def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
indices = [1, 2, 4, -1, -2]
|
|
samplers = ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices)
|
|
for sampler in samplers:
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 5
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 5
|
|
|
|
|
|
def test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file):
|
|
data = get_data(CV_DIR_NAME, True)
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.RandomSampler()
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 10
|
|
num_iter = 0
|
|
new_dataset = []
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
new_dataset.append(item['file_name'])
|
|
assert num_iter == 10
|
|
assert new_dataset != [x['file_name'] for x in data]
|
|
|
|
|
|
def test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file):
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.RandomSampler()
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 10
|
|
ds1 = data_set.repeat(3)
|
|
num_iter = 0
|
|
epoch1_dataset = []
|
|
epoch2_dataset = []
|
|
epoch3_dataset = []
|
|
for item in ds1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
if num_iter <= 10:
|
|
epoch1_dataset.append(item['file_name'])
|
|
elif num_iter <= 20:
|
|
epoch2_dataset.append(item['file_name'])
|
|
else:
|
|
epoch3_dataset.append(item['file_name'])
|
|
assert num_iter == 30
|
|
assert epoch1_dataset not in (epoch2_dataset, epoch3_dataset)
|
|
assert epoch2_dataset not in (epoch1_dataset, epoch3_dataset)
|
|
assert epoch3_dataset not in (epoch1_dataset, epoch2_dataset)
|
|
|
|
|
|
def test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file):
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.RandomSampler(replacement=True, num_samples=5)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 5
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 5
|
|
|
|
|
|
def test_cv_minddataset_random_sampler_replacement_false_1(add_and_remove_cv_file):
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.RandomSampler(replacement=False, num_samples=2)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 2
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 2
|
|
|
|
|
|
def test_cv_minddataset_random_sampler_replacement_false_2(add_and_remove_cv_file):
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.RandomSampler(replacement=False, num_samples=20)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 10
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
assert num_iter == 10
|
|
|
|
|
|
def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
|
|
data = get_data(CV_DIR_NAME, True)
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.SequentialSampler(1, 4)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
assert data_set.get_dataset_size() == 4
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(
|
|
data[num_iter + 1]['file_name'], dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 4
|
|
|
|
|
|
def test_cv_minddataset_sequential_sampler_offeset(add_and_remove_cv_file):
|
|
data = get_data(CV_DIR_NAME, True)
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.SequentialSampler(2, 10)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
dataset_size = data_set.get_dataset_size()
|
|
assert dataset_size == 10
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(
|
|
data[(num_iter + 2) % dataset_size]['file_name'], dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 10
|
|
|
|
|
|
def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
|
|
data = get_data(CV_DIR_NAME, True)
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
sampler = ds.SequentialSampler(2, 20)
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
sampler=sampler)
|
|
dataset_size = data_set.get_dataset_size()
|
|
assert dataset_size == 10
|
|
num_iter = 0
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(
|
|
data[(num_iter + 2) % dataset_size]['file_name'], dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 10
|
|
|
|
|
|
def test_cv_minddataset_split_basic(add_and_remove_cv_file):
|
|
data = get_data(CV_DIR_NAME, True)
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
|
|
num_readers, shuffle=False)
|
|
d1, d2 = d.split([8, 2], randomize=False)
|
|
assert d.get_dataset_size() == 10
|
|
assert d1.get_dataset_size() == 8
|
|
assert d2.get_dataset_size() == 2
|
|
num_iter = 0
|
|
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(data[num_iter]['file_name'],
|
|
dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 8
|
|
num_iter = 0
|
|
for item in d2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(data[num_iter + 8]['file_name'],
|
|
dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 2
|
|
|
|
|
|
def test_cv_minddataset_split_exact_percent(add_and_remove_cv_file):
|
|
data = get_data(CV_DIR_NAME, True)
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
|
|
num_readers, shuffle=False)
|
|
d1, d2 = d.split([0.8, 0.2], randomize=False)
|
|
assert d.get_dataset_size() == 10
|
|
assert d1.get_dataset_size() == 8
|
|
assert d2.get_dataset_size() == 2
|
|
num_iter = 0
|
|
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(
|
|
data[num_iter]['file_name'], dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 8
|
|
num_iter = 0
|
|
for item in d2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(data[num_iter + 8]['file_name'],
|
|
dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 2
|
|
|
|
|
|
def test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file):
|
|
data = get_data(CV_DIR_NAME, True)
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
|
|
num_readers, shuffle=False)
|
|
d1, d2 = d.split([0.41, 0.59], randomize=False)
|
|
assert d.get_dataset_size() == 10
|
|
assert d1.get_dataset_size() == 4
|
|
assert d2.get_dataset_size() == 6
|
|
num_iter = 0
|
|
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(
|
|
data[num_iter]['file_name'], dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 4
|
|
num_iter = 0
|
|
for item in d2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
assert item['file_name'] == np.array(data[num_iter + 4]['file_name'],
|
|
dtype='S')
|
|
num_iter += 1
|
|
assert num_iter == 6
|
|
|
|
|
|
def test_cv_minddataset_split_deterministic(add_and_remove_cv_file):
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
|
|
num_readers, shuffle=False)
|
|
# should set seed to avoid data overlap
|
|
ds.config.set_seed(111)
|
|
d1, d2 = d.split([0.8, 0.2])
|
|
assert d.get_dataset_size() == 10
|
|
assert d1.get_dataset_size() == 8
|
|
assert d2.get_dataset_size() == 2
|
|
|
|
d1_dataset = []
|
|
d2_dataset = []
|
|
num_iter = 0
|
|
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
d1_dataset.append(item['file_name'])
|
|
num_iter += 1
|
|
assert num_iter == 8
|
|
num_iter = 0
|
|
for item in d2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
d2_dataset.append(item['file_name'])
|
|
num_iter += 1
|
|
assert num_iter == 2
|
|
inter_dataset = [x for x in d1_dataset if x in d2_dataset]
|
|
assert inter_dataset == [] # intersection of d1 and d2
|
|
|
|
|
|
def test_cv_minddataset_split_sharding(add_and_remove_cv_file):
|
|
data = get_data(CV_DIR_NAME, True)
|
|
columns_list = ["data", "file_name", "label"]
|
|
num_readers = 4
|
|
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
|
|
num_readers, shuffle=False)
|
|
# should set seed to avoid data overlap
|
|
ds.config.set_seed(111)
|
|
d1, d2 = d.split([0.8, 0.2])
|
|
assert d.get_dataset_size() == 10
|
|
assert d1.get_dataset_size() == 8
|
|
assert d2.get_dataset_size() == 2
|
|
distributed_sampler = ds.DistributedSampler(2, 0)
|
|
d1.use_sampler(distributed_sampler)
|
|
assert d1.get_dataset_size() == 4
|
|
|
|
num_iter = 0
|
|
d1_shard1 = []
|
|
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
d1_shard1.append(item['file_name'])
|
|
assert num_iter == 4
|
|
assert d1_shard1 != [x['file_name'] for x in data[0:4]]
|
|
|
|
distributed_sampler = ds.DistributedSampler(2, 1)
|
|
d1.use_sampler(distributed_sampler)
|
|
assert d1.get_dataset_size() == 4
|
|
|
|
d1s = d1.repeat(3)
|
|
epoch1_dataset = []
|
|
epoch2_dataset = []
|
|
epoch3_dataset = []
|
|
num_iter = 0
|
|
for item in d1s.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info(
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
logger.info(
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
logger.info(
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
num_iter += 1
|
|
if num_iter <= 4:
|
|
epoch1_dataset.append(item['file_name'])
|
|
elif num_iter <= 8:
|
|
epoch2_dataset.append(item['file_name'])
|
|
else:
|
|
epoch3_dataset.append(item['file_name'])
|
|
assert len(epoch1_dataset) == 4
|
|
assert len(epoch2_dataset) == 4
|
|
assert len(epoch3_dataset) == 4
|
|
inter_dataset = [x for x in d1_shard1 if x in epoch1_dataset]
|
|
assert inter_dataset == [] # intersection of d1's shard1 and d1's shard2
|
|
assert epoch1_dataset not in (epoch2_dataset, epoch3_dataset)
|
|
assert epoch2_dataset not in (epoch1_dataset, epoch3_dataset)
|
|
assert epoch3_dataset not in (epoch1_dataset, epoch2_dataset)
|
|
|
|
epoch1_dataset.sort()
|
|
epoch2_dataset.sort()
|
|
epoch3_dataset.sort()
|
|
assert epoch1_dataset != epoch2_dataset
|
|
assert epoch2_dataset != epoch3_dataset
|
|
assert epoch3_dataset != epoch1_dataset
|
|
|
|
|
|
def get_data(dir_name, sampler=False):
|
|
"""
|
|
usage: get data from imagenet dataset
|
|
params:
|
|
dir_name: directory containing folder images and annotation information
|
|
|
|
"""
|
|
if not os.path.isdir(dir_name):
|
|
raise IOError("Directory {} not exists".format(dir_name))
|
|
img_dir = os.path.join(dir_name, "images")
|
|
if sampler:
|
|
ann_file = os.path.join(dir_name, "annotation_sampler.txt")
|
|
else:
|
|
ann_file = os.path.join(dir_name, "annotation.txt")
|
|
with open(ann_file, "r") as file_reader:
|
|
lines = file_reader.readlines()
|
|
|
|
data_list = []
|
|
for i, line in enumerate(lines):
|
|
try:
|
|
filename, label = line.split(",")
|
|
label = label.strip("\n")
|
|
with open(os.path.join(img_dir, filename), "rb") as file_reader:
|
|
img = file_reader.read()
|
|
data_json = {"id": i,
|
|
"file_name": filename,
|
|
"data": img,
|
|
"label": int(label)}
|
|
data_list.append(data_json)
|
|
except FileNotFoundError:
|
|
continue
|
|
return data_list
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file)
|
|
test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file)
|
|
test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file)
|
|
test_cv_minddataset_pk_sample_out_of_range(add_and_remove_cv_file)
|
|
test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file)
|
|
test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file)
|
|
test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file)
|
|
test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file)
|
|
test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file)
|
|
test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file)
|
|
test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file)
|
|
test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file)
|
|
test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file)
|
|
test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file)
|
|
test_cv_minddataset_split_basic(add_and_remove_cv_file)
|
|
test_cv_minddataset_split_exact_percent(add_and_remove_cv_file)
|
|
test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file)
|
|
test_cv_minddataset_split_deterministic(add_and_remove_cv_file)
|
|
test_cv_minddataset_split_sharding(add_and_remove_cv_file)
|