forked from mindspore-Ecosystem/mindspore
116 lines
4.2 KiB
Python
116 lines
4.2 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test summary ops."""
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore import nn, Tensor, context
|
|
from mindspore.common.initializer import Normal
|
|
from mindspore.nn.metrics import Loss
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train import Model
|
|
from mindspore.train.summary.summary_record import _get_summary_tensor_data
|
|
from tests.st.summary.dataset import create_mnist_dataset
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
"""LeNet network"""
|
|
|
|
def __init__(self, num_class=10, num_channel=1, include_top=True):
|
|
super(LeNet5, self).__init__()
|
|
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
|
|
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
|
self.relu = nn.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.include_top = include_top
|
|
if self.include_top:
|
|
self.flatten = nn.Flatten()
|
|
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
|
|
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
|
|
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
|
|
|
|
self.scalar_summary = P.ScalarSummary()
|
|
self.image_summary = P.ImageSummary()
|
|
self.tensor_summary = P.TensorSummary()
|
|
self.channel = Tensor(num_channel)
|
|
|
|
def construct(self, x):
|
|
"""construct"""
|
|
self.image_summary('x', x)
|
|
self.tensor_summary('x', x)
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.conv2(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
if not self.include_top:
|
|
return x
|
|
x = self.flatten(x)
|
|
x = self.relu(self.fc1(x))
|
|
x = self.relu(self.fc2(x))
|
|
x = self.fc3(x)
|
|
self.scalar_summary('x_fc3', x[0][0])
|
|
return x
|
|
|
|
|
|
class TestSummaryOps:
|
|
"""Test summary ops."""
|
|
base_summary_dir = ''
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
"""Run before test this class."""
|
|
device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
|
|
context.set_context(mode=context.GRAPH_MODE, device_id=device_id)
|
|
cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
|
|
|
|
@classmethod
|
|
def teardown_class(cls):
|
|
"""Run after test this class."""
|
|
if os.path.exists(cls.base_summary_dir):
|
|
shutil.rmtree(cls.base_summary_dir)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_summary_ops(self):
|
|
"""Test summary operators."""
|
|
ds_train = create_mnist_dataset('train', num_samples=1, batch_size=1)
|
|
ds_train_iter = ds_train.create_dict_iterator()
|
|
expected_data = next(ds_train_iter)['image'].asnumpy()
|
|
|
|
net = LeNet5()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
model = Model(net, loss_fn=loss, optimizer=optim, metrics={'loss': Loss()})
|
|
model.train(1, ds_train, dataset_sink_mode=False)
|
|
|
|
summary_data = _get_summary_tensor_data()
|
|
image_data = summary_data['x[:Image]'].asnumpy()
|
|
tensor_data = summary_data['x[:Tensor]'].asnumpy()
|
|
x_fc3 = summary_data['x_fc3[:Scalar]'].asnumpy()
|
|
|
|
assert np.allclose(expected_data, image_data)
|
|
assert np.allclose(expected_data, tensor_data)
|
|
assert not np.allclose(0, x_fc3)
|