forked from mindspore-Ecosystem/mindspore
389 lines
16 KiB
Python
389 lines
16 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
# ============================================================================
|
||
"""Aggregator."""
|
||
import mindspore.nn as nn
|
||
from mindspore import Tensor, Parameter
|
||
from mindspore._checkparam import Validator
|
||
from mindspore._extends import cell_attr_register
|
||
from mindspore.common.initializer import initializer
|
||
from mindspore.nn.layer.activation import get_activation
|
||
from mindspore.ops import functional as F
|
||
from mindspore.ops import operations as P
|
||
|
||
|
||
class GNNFeatureTransform(nn.Cell):
|
||
r"""
|
||
The GNN featuren transform layer for input.
|
||
|
||
Applies linear transformation for the input feature. This layer implements the operation as:
|
||
|
||
.. math::
|
||
\text{outputs} = \text{inputs} * \text{kernel} + \text{bias},
|
||
|
||
where :math:`\text{activation}` is the activation function passed as the activation
|
||
argument (if passed in),:math:`\text{activation}` is a weight matrix with the same
|
||
data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
|
||
with the same data type as the inputs created by the layer (only if has_bias is True).
|
||
|
||
Args:
|
||
in_channels (int): The number of channels in the input space.
|
||
out_channels (int): The number of channels in the output space.
|
||
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
||
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
|
||
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
||
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
||
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
||
|
||
Raises:
|
||
ValueError: If weight_init or bias_init shape is incorrect.
|
||
|
||
Inputs:
|
||
- **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`,
|
||
where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the
|
||
size of the last two dimensions. If `transpose_a` is True, its shape should be :math:`(*B, C, N)`.
|
||
|
||
Outputs:
|
||
Tensor, the shape of the output tensor is :math:`(*B, N, M)`.
|
||
|
||
Examples:
|
||
>>> net = nn.GNNFeatureTransform(3, 4)
|
||
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
|
||
>>> net(input)
|
||
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
|
||
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
|
||
"""
|
||
|
||
@cell_attr_register
|
||
def __init__(self,
|
||
in_channels,
|
||
out_channels,
|
||
weight_init='normal',
|
||
bias_init='zeros',
|
||
has_bias=True):
|
||
super(GNNFeatureTransform, self).__init__()
|
||
self.in_channels = Validator.check_positive_int(in_channels)
|
||
self.out_channels = Validator.check_positive_int(out_channels)
|
||
self.has_bias = Validator.check_bool(has_bias)
|
||
|
||
if isinstance(weight_init, Tensor):
|
||
if weight_init.ndim != 2 or weight_init.shape[0] != out_channels or \
|
||
weight_init.shape[1] != in_channels:
|
||
raise ValueError("weight_init shape error")
|
||
|
||
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
||
|
||
if self.has_bias:
|
||
if isinstance(bias_init, Tensor):
|
||
if bias_init.ndim != 1 or bias_init.shape[0] != out_channels:
|
||
raise ValueError("bias_init shape error")
|
||
|
||
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
||
|
||
self.matmul = P.MatMul(transpose_b=True)
|
||
self.bias_add = P.BiasAdd()
|
||
|
||
def construct(self, x):
|
||
tensor_shape = F.shape(x)
|
||
input_feature = F.reshape(x, (tensor_shape[0] * tensor_shape[1], tensor_shape[2]))
|
||
output = self.matmul(input_feature, self.weight)
|
||
if self.has_bias:
|
||
output = self.bias_add(output, self.bias)
|
||
output = F.reshape(output, (tensor_shape[0], tensor_shape[1], self.out_channels))
|
||
return output
|
||
|
||
def extend_repr(self):
|
||
s = 'in_channels={}, out_channels={}'.format(self.in_channels, self.out_channels)
|
||
if self.has_bias:
|
||
s += ', has_bias={}'.format(self.has_bias)
|
||
return s
|
||
|
||
|
||
class _BaseAggregator(nn.Cell):
|
||
"""
|
||
Base Aggregator of GNN
|
||
|
||
Args:
|
||
feature_in_dim (int): Node or edge input feature dim.
|
||
feature_out_dim (int): Node or edge outpout feature dim.
|
||
use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True
|
||
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
||
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
|
||
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
||
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
||
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
||
dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
|
||
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
|
||
|
||
Examples:
|
||
>>> class MyAggregator(_BaseAggregator):
|
||
>>> def __init__(self):
|
||
>>> super(MyAggregator, self).__init__(self, feature_in_dim, feature_out_dim)
|
||
>>> self.reduce_mean = P.ReduceSum()
|
||
>>>
|
||
>>> def construct(self, x):
|
||
>>> return self.reduce_mean(x, 1)
|
||
"""
|
||
|
||
def __init__(self,
|
||
feature_in_dim,
|
||
feature_out_dim,
|
||
use_fc=True,
|
||
weight_init="normal",
|
||
bias_init="zeros",
|
||
has_bias=True,
|
||
dropout_ratio=None,
|
||
activation=None):
|
||
super(_BaseAggregator, self).__init__()
|
||
self.in_dim = feature_in_dim
|
||
self.out_dim = feature_out_dim
|
||
self.use_fc = use_fc
|
||
if self.use_fc:
|
||
self.weight_init = weight_init
|
||
self.bias_init = bias_init
|
||
self.has_bias = has_bias
|
||
self.fc = GNNFeatureTransform(self.in_dim,
|
||
self.out_dim,
|
||
weight_init=self.weight_init,
|
||
bias_init=self.bias_init,
|
||
has_bias=self.has_bias)
|
||
self.dropout_ratio = dropout_ratio
|
||
if self.dropout_ratio is not None:
|
||
self.dropout = nn.Dropout(keep_prob=self.dropout_ratio)
|
||
self.dropout_flag = self.dropout_ratio is not None
|
||
self.activation = get_activation(activation)
|
||
self.activation_flag = self.activation is not None
|
||
|
||
def construct(self, **kward):
|
||
"""Must be overridden by all subclasses."""
|
||
raise NotImplementedError
|
||
|
||
|
||
class MeanAggregator(_BaseAggregator):
|
||
"""
|
||
Mean Aggregator of GNN
|
||
|
||
Args:
|
||
feature_in_dim (int): Node or edge input feature dim.
|
||
feature_out_dim (int): Node or edge outpout feature dim.
|
||
use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True
|
||
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
||
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
|
||
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
||
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
||
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
||
dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
|
||
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
|
||
|
||
Examples:
|
||
>>> net = MeanAggregator(32, 64, activation="relu", dropout=0.5)
|
||
>>> input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtypy=np.float32))
|
||
>>> output = net(input_data)
|
||
"""
|
||
|
||
def __init__(self,
|
||
feature_in_dim,
|
||
feature_out_dim,
|
||
use_fc=True,
|
||
weight_init="normal",
|
||
bias_init="zeros",
|
||
has_bias=True,
|
||
dropout_ratio=None,
|
||
activation=None):
|
||
super(MeanAggregator, self).__init__(
|
||
feature_in_dim,
|
||
feature_out_dim,
|
||
use_fc,
|
||
weight_init,
|
||
bias_init,
|
||
has_bias,
|
||
dropout_ratio,
|
||
activation)
|
||
self.reduce_mean = P.ReduceMean(keep_dims=False)
|
||
|
||
def construct(self, input_feature):
|
||
if self.use_fc:
|
||
input_feature = self.fc(input_feature)
|
||
if self.dropout_flag:
|
||
input_feature = self.dropout(input_feature)
|
||
if self.activation_flag:
|
||
input_feature = self.activation(input_feature)
|
||
output_feature = self.reduce_mean(input_feature, 1)
|
||
return output_feature
|
||
|
||
|
||
class AttentionHead(nn.Cell):
|
||
"""
|
||
Attention Head for Graph Attention Networks.
|
||
|
||
Args:
|
||
in_channel (int): The number of input channel, input feature dim.
|
||
out_channel (int): The number of output channel, output feature dim.
|
||
in_drop_ratio (float): Input feature dropout ratio, default 0.0.
|
||
coef_drop_ratio (float): Coefficient dropout ratio, default 0.0.
|
||
residual (bool): Whether to use residual connection, default False.
|
||
coef_activation (Cell): The attention coefficient activation function,
|
||
default nn.LeakyReLU().
|
||
activation (Cell): The output activation function, default nn.ELU().
|
||
|
||
Inputs:
|
||
- **input_feature** (Tensor) - Tensor of shape : (batch_size, num_nodes, feature_dim).
|
||
- **bias_mat** (Tensor) - Tensor of shape : (batch_size, num_nodes, num_nodes).
|
||
|
||
Examples:
|
||
>>> head = AttentionHead(1433,
|
||
8,
|
||
in_drop_ratio=0.6,
|
||
coef_drop_ratio=0.6,
|
||
residual=False)
|
||
>>> input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtypy=np.float32))
|
||
>>> output = net(input_data)
|
||
"""
|
||
|
||
def __init__(self,
|
||
in_channel,
|
||
out_channel,
|
||
in_drop_ratio=0.0,
|
||
coef_drop_ratio=0.0,
|
||
residual=False,
|
||
coef_activation=nn.LeakyReLU(),
|
||
activation=nn.ELU()):
|
||
super(AttentionHead, self).__init__()
|
||
self.in_channel = Validator.check_positive_int(in_channel)
|
||
self.out_channel = Validator.check_positive_int(out_channel)
|
||
self.in_drop_ratio = in_drop_ratio
|
||
self.in_drop = nn.Dropout(keep_prob=1 - in_drop_ratio)
|
||
self.in_drop_2 = nn.Dropout(keep_prob=1 - in_drop_ratio)
|
||
self.feature_transform = GNNFeatureTransform(
|
||
in_channels=self.in_channel,
|
||
out_channels=self.out_channel,
|
||
has_bias=False)
|
||
|
||
self.f_1_transform = GNNFeatureTransform(
|
||
in_channels=self.out_channel,
|
||
out_channels=1)
|
||
self.f_2_transform = GNNFeatureTransform(
|
||
in_channels=self.out_channel,
|
||
out_channels=1)
|
||
self.softmax = nn.Softmax()
|
||
|
||
self.coef_drop = nn.Dropout(keep_prob=1 - coef_drop_ratio)
|
||
self.batch_matmul = P.BatchMatMul()
|
||
self.bias_add = P.BiasAdd()
|
||
self.bias = Parameter(initializer('zeros', self.out_channel), name='bias')
|
||
self.residual = Validator.check_bool(residual)
|
||
if self.residual:
|
||
if in_channel != out_channel:
|
||
self.residual_transform_flag = True
|
||
self.residual_transform = GNNFeatureTransform(
|
||
in_channels=self.in_channel,
|
||
out_channels=self.out_channel)
|
||
else:
|
||
self.residual_transform = None
|
||
self.coef_activation = coef_activation
|
||
self.activation = activation
|
||
|
||
def construct(self, input_feature, bias_mat):
|
||
input_feature = self.in_drop(input_feature)
|
||
|
||
feature = self.feature_transform(input_feature)
|
||
# self attention following the author
|
||
f_1 = self.f_1_transform(feature)
|
||
f_2 = self.f_2_transform(feature)
|
||
logits = f_1 + P.Transpose()(f_2, (0, 2, 1))
|
||
logits = self.coef_activation(logits) + bias_mat
|
||
coefs = self.softmax(logits)
|
||
|
||
coefs = self.coef_drop(coefs)
|
||
feature = self.in_drop_2(feature)
|
||
|
||
ret = self.batch_matmul(coefs, feature)
|
||
ret = P.Squeeze(0)(ret)
|
||
ret = self.bias_add(ret, self.bias)
|
||
ret = P.ExpandDims()(ret, 0)
|
||
# residual connection
|
||
if self.residual:
|
||
if self.residual_transform_flag:
|
||
res = self.residual_transform(input_feature)
|
||
ret = ret + res
|
||
else:
|
||
ret = ret + input_feature
|
||
# activation
|
||
if self.activation is not None:
|
||
ret = self.activation(ret)
|
||
return ret
|
||
|
||
|
||
class AttentionAggregator(nn.Cell):
|
||
"""
|
||
Attention Head for Graph Attention Networks,can be regarded as one
|
||
GAT layer.
|
||
|
||
Args:
|
||
in_channel (int): Input channel.
|
||
out_channel (int): Output channel.
|
||
num_heads (int): Number of attention heads for this layer, default 1.
|
||
in_drop_ratio (float): Input feature dropout ratio, default 0.0.
|
||
coef_drop_ratio (float): Coefficient dropout ratio, default 0.0.
|
||
activation (Cell): The output activation function, default nn.ELU().
|
||
residual (bool): Whether to use residual connection, default False.
|
||
output_transform (str['concat', 'sum']): output transform for a layer,
|
||
default 'concat'
|
||
|
||
Inputs:
|
||
- **input_feature** (Tensor) - Tensor of shape : (batch_size, num_nodes, feature_dim).
|
||
- **bias_mat** (Tensor) - Tensor of shape : (batch_size, num_nodes, num_nodes).
|
||
|
||
Examples:
|
||
>>> input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
|
||
>>> biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
|
||
>>> net = AttentionAggregator(1433,
|
||
8,
|
||
8)
|
||
>>> net(input_data, biases)
|
||
"""
|
||
|
||
def __init__(self,
|
||
in_channels,
|
||
out_channels,
|
||
num_heads=1,
|
||
in_drop=0.0,
|
||
coef_drop=0.0,
|
||
activation=nn.ELU(),
|
||
residual=False,
|
||
output_transform='concat'):
|
||
super(AttentionAggregator, self).__init__()
|
||
self.num_heads = num_heads
|
||
self.attns = []
|
||
for _ in range(num_heads):
|
||
self.attns.append(AttentionHead(in_channels,
|
||
out_channels,
|
||
in_drop_ratio=in_drop,
|
||
coef_drop_ratio=coef_drop,
|
||
activation=activation,
|
||
residual=residual))
|
||
self.attns = nn.layer.CellList(self.attns)
|
||
if output_transform == 'concat':
|
||
self.out_trans = P.Concat(-1)
|
||
elif output_transform == 'sum':
|
||
self.out_trans = P.AddN()
|
||
else:
|
||
raise ValueError
|
||
|
||
def construct(self, input_data, bias_mat):
|
||
res = ()
|
||
for i in range(self.num_heads):
|
||
res += (self.attns[i](input_data, bias_mat),)
|
||
return self.out_trans(res)
|