forked from mindspore-Ecosystem/mindspore
49 lines
1.6 KiB
Python
49 lines
1.6 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import pytest
|
|
from mindspore.ops import composite as C
|
|
import mindspore.common.dtype as mstype
|
|
import mindspore.nn as nn
|
|
import mindspore.context as context
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
class Net(nn.Cell):
|
|
def construct(self, x, y):
|
|
while x < y:
|
|
x = x * x + 1
|
|
return x
|
|
|
|
|
|
class GradNet(nn.Cell):
|
|
def __init__(self, net):
|
|
super().__init__()
|
|
self.net = net
|
|
self.grad_op = C.GradOperation(get_all=True)
|
|
|
|
def construct(self, x, y):
|
|
gradient_function = self.grad_op(self.net)
|
|
return gradient_function(x, y)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_while_grad():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
|
x = Tensor([2.0], dtype=mstype.float32)
|
|
y = Tensor([2.0], dtype=mstype.float32)
|
|
GradNet(Net())(x, y)
|