mindspore/model_zoo/official/cv/yolov3_darknet53/convert_weight.py

76 lines
3.0 KiB
Python

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Convert weight to mindspore ckpt."""
import os
import numpy as np
from mindspore.train.serialization import save_checkpoint
from mindspore import Tensor
from src.yolo import YOLOV3DarkNet53
from model_utils.config import config
def load_weight(weights_file):
"""Loads pre-trained weights."""
if not os.path.isfile(weights_file):
raise ValueError(f'"{weights_file}" is not a valid weight file.')
with open(weights_file, 'rb') as fp:
np.fromfile(fp, dtype=np.int32, count=5)
return np.fromfile(fp, dtype=np.float32)
def build_network():
"""Build YOLOv3 network."""
network = YOLOV3DarkNet53(is_training=True)
params = network.get_parameters()
params = [p for p in params if 'backbone' in p.name]
return params
def convert(weights_file, output_file):
"""Convert weight to mindspore ckpt."""
params = build_network()
weights = load_weight(weights_file)
index = 0
param_list = []
for i in range(0, len(params), 5):
weight = params[i]
mean = params[i+1]
var = params[i+2]
gamma = params[i+3]
beta = params[i+4]
beta_data = weights[index: index+beta.size].reshape(beta.shape)
index += beta.size
gamma_data = weights[index: index+gamma.size].reshape(gamma.shape)
index += gamma.size
mean_data = weights[index: index+mean.size].reshape(mean.shape)
index += mean.size
var_data = weights[index: index + var.size].reshape(var.shape)
index += var.size
weight_data = weights[index: index+weight.size].reshape(weight.shape)
index += weight.size
param_list.append({'name': weight.name, 'type': weight.dtype, 'shape': weight.shape,
'data': Tensor(weight_data)})
param_list.append({'name': mean.name, 'type': mean.dtype, 'shape': mean.shape, 'data': Tensor(mean_data)})
param_list.append({'name': var.name, 'type': var.dtype, 'shape': var.shape, 'data': Tensor(var_data)})
param_list.append({'name': gamma.name, 'type': gamma.dtype, 'shape': gamma.shape, 'data': Tensor(gamma_data)})
param_list.append({'name': beta.name, 'type': beta.dtype, 'shape': beta.shape, 'data': Tensor(beta_data)})
save_checkpoint(param_list, output_file)
if __name__ == "__main__":
convert(config.input_file, config.output_file)