mindspore/model_zoo/research/cv/MaskedFaceRecognition/test_dataset.py

66 lines
2.2 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
create train or eval dataset.
"""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from config import config
from dataset.Dataset import Dataset
def create_dataset(data_dir, p=16, k=8):
"""
create a train or eval dataset
Args:
dataset_path(string): the path of dataset.
p(int): randomly choose p classes from all classes.
k(int): randomly choose k images from each of the chosen p classes.
p * k is the batchsize.
Returns:
dataset
"""
dataset = Dataset(data_dir)
de_dataset = de.GeneratorDataset(dataset, ["image", "label1", "label2"])
resize_height = config.image_height
resize_width = config.image_width
rescale = 1.0 / 255.0
shift = 0.0
resize_op = CV.Resize((resize_height, resize_width))
rescale_op = CV.Rescale(rescale, shift)
normalize_op = CV.Normalize([0.486, 0.459, 0.408], [0.229, 0.224, 0.225])
change_swap_op = CV.HWC2CHW()
trans = []
trans += [resize_op, rescale_op, normalize_op, change_swap_op]
type_cast_op_label1 = C.TypeCast(mstype.int32)
type_cast_op_label2 = C.TypeCast(mstype.float32)
de_dataset = de_dataset.map(input_columns="label1", operations=type_cast_op_label1)
de_dataset = de_dataset.map(input_columns="label2", operations=type_cast_op_label2)
de_dataset = de_dataset.map(input_columns="image", operations=trans)
de_dataset = de_dataset.batch(p*k, drop_remainder=False)
return de_dataset