forked from mindspore-Ecosystem/mindspore
Xinghao Chen cd31275061 | ||
---|---|---|
.. | ||
src | ||
README.md | ||
eval.py | ||
mindpsore_hub_conf.py |
README.md
Contents
- HourNAS Description
- Model Architecture
- Dataset
- Environment Requirements
- Script Description
- Model Description
- Description of Random Situation
- ModelZoo Homepage
HourNAS Description
HourNAS is an efficient neural architecture search method. Only using 3 hours (0.1 days) with one GPU, HourNAS can search an architecture that achieves a 77.0% Top-1 accuracy, which outperforms the state-of-the-art methods.
Paper: Zhaohui Yang, Yunhe Wang, Xinghao Chen, Jianyuan Guo, Wei Zhang, Chao Xu, Chunjing Xu, Dacheng Tao, Chang Xu. HourNAS: Extremely Fast Neural Architecture Search Through an Hourglass Lens. In CVPR 2021.
Model architecture
The overall network architecture of HourNAS is show below:
Dataset
Dataset used: CIFAR-10
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
- Train:146M,50,000 images
- Test:29M,10,000 images
- Data format:binary files
- Note:Data will be processed in src/dataset.py
Environment Requirements
- Hardware (GPU)
- Framework
- For more information, please check the resources below:
Script Description
Script and Sample Code
.HourNAS
├── README.md # descriptions about HourNAS
├── src
│ ├── architectures.py # definition of HourNAS-F model
│ ├── dataset.py # data preprocessing
│ ├── hournasnet.py # HourNAS general architecture
│ └── utils.py # utility functions
├── eval.py # evaluation interface
Training process
To Be Done
Evaluation Process
Launch
# infer example
python eval.py --model hournas_f_c10 --dataset_path [DATA_PATH] --GPU --ckpt [CHECKPOINT_PATH]
Result
result: {'Top1-Acc': 0.9618389423076923} ckpt= ./hournas_f_cifar10.ckpt
Model Description
Performance
Evaluation Performance
Model | FLOPs (M) | Params (M) | ImageNet Top-1 |
---|---|---|---|
MnasNet-A1 | 312 | 3.9 | 75.2% |
HourNAS-E | 313 | 3.8 | 75.7% |
EfficientNet-B0 | 390 | 5.3 | 76.8% |
HourNAS-F | 383 | 5.3 | 77.0% |
More details in Paper.
Description of Random Situation
We set the seed inside dataset.py.
ModelZoo Homepage
Please check the official homepage.