mindspore/model_zoo/official/cv/vgg16/postprocess.py

47 lines
2.0 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""postprocess for 310 inference"""
import os
import json
import numpy as np
from mindspore.nn import Top1CategoricalAccuracy, Top5CategoricalAccuracy
from model_utils.moxing_adapter import config
if __name__ == '__main__':
top1_acc = Top1CategoricalAccuracy()
rst_path = config.result_dir
if config.dataset_name == "cifar10":
labels = np.load(config.label_dir, allow_pickle=True)
for idx, label in enumerate(labels):
f_name = os.path.join(rst_path, "VGG16_data_bs" + str(config.batch_size) + "_" + str(idx) + "_0.bin")
pred = np.fromfile(f_name, np.float32)
pred = pred.reshape(config.batch_size, int(pred.shape[0] / config.batch_size))
top1_acc.update(pred, labels[idx])
print("acc: ", top1_acc.eval())
else:
top5_acc = Top5CategoricalAccuracy()
file_list = os.listdir(rst_path)
with open(config.label_dir, "r") as label:
labels = json.load(label)
for f in file_list:
label = f.split("_0.bin")[0] + ".JPEG"
pred = np.fromfile(os.path.join(rst_path, f), np.float32)
pred = pred.reshape(config.batch_size, int(pred.shape[0] / config.batch_size))
top1_acc.update(pred, [labels[label],])
top5_acc.update(pred, [labels[label],])
print("Top1 acc: ", top1_acc.eval())
print("Top5 acc: ", top5_acc.eval())