forked from mindspore-Ecosystem/mindspore
52 lines
2.0 KiB
Python
52 lines
2.0 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""postprocess for 310 inference"""
|
|
import os
|
|
import json
|
|
import argparse
|
|
import numpy as np
|
|
from mindspore.nn import Top1CategoricalAccuracy, Top5CategoricalAccuracy
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="postprocess")
|
|
parser.add_argument("--result_dir", type=str, required=True, help="result files path.")
|
|
parser.add_argument("--label_dir", type=str, required=True, help="image file path.")
|
|
parser.add_argument('--dataset_name', type=str, choices=["cifar10", "imagenet2012"], default="imagenet2012")
|
|
args = parser.parse_args()
|
|
|
|
def calcul_acc(lab, preds):
|
|
return sum(1 for x, y in zip(lab, preds) if x == y) / len(lab)
|
|
|
|
if __name__ == '__main__':
|
|
batch_size = 1
|
|
top1_acc = Top1CategoricalAccuracy()
|
|
rst_path = args.result_dir
|
|
label_list = []
|
|
pred_list = []
|
|
#from src.config import config2 as cfg
|
|
top5_acc = Top5CategoricalAccuracy()
|
|
file_list = os.listdir(rst_path)
|
|
with open(args.label_dir, "r") as label:
|
|
labels = json.load(label)
|
|
for f in file_list:
|
|
label = f.split("_0.bin")[0] + ".JPEG"
|
|
label_list.append(labels[label])
|
|
pred = np.fromfile(os.path.join(rst_path, f), np.float32)
|
|
pred = pred.reshape(batch_size, int(pred.shape[0] / batch_size))
|
|
top1_acc.update(pred, [labels[label],])
|
|
top5_acc.update(pred, [labels[label],])
|
|
print("Top1 acc: ", top1_acc.eval())
|
|
print("Top5 acc: ", top5_acc.eval())
|