mindspore/tests/st/auto_parallel/resnet50_expand_loss.py

378 lines
13 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.context as context
import mindspore.nn as nn
import mindspore.ops.functional as F
from mindspore import Tensor
from mindspore.common.initializer import TruncatedNormal
from mindspore.communication.management import init
from mindspore.nn.loss.loss import Loss
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import operations as P
from mindspore.parallel import set_algo_parameters
from mindspore.train.callback import Callback
from mindspore.train.model import Model
from mindspore.context import ParallelMode
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(device_id=int(os.getenv('DEVICE_ID')))
init()
context.set_auto_parallel_context(gradients_mean=True, parallel_mode=ParallelMode.AUTO_PARALLEL)
np.random.seed(10)
def weight_variable():
return TruncatedNormal(0.01)
def _conv3x3(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
init_value = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value)
def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
init_value = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value)
def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
init_value = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=7, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value)
def _fused_bn(channels, momentum=0.9):
return nn.BatchNorm2d(channels, momentum=momentum)
class BasicBlock(nn.Cell):
expansion = 1
def __init__(self,
in_channels,
out_channels,
stride=1,
momentum=0.1):
super(BasicBlock, self).__init__()
self.conv1 = _conv3x3(in_channels, out_channels, stride=stride)
self.bn1 = _fused_bn(out_channels, momentum=momentum)
self.conv2 = _conv3x3(out_channels, out_channels)
self.bn2 = _fused_bn(out_channels, momentum=momentum)
self.relu = P.ReLU()
self.down_sample_layer = None
self.downsample = (in_channels != out_channels)
if self.downsample:
self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channels,
out_channels,
stride=stride,
padding=0),
_fused_bn(out_channels,
momentum=momentum)])
self.add = P.Add()
def construct(self, x):
identity = x
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
if self.downsample:
identity = self.down_sample_layer(identity)
out = self.add(x, identity)
out = self.relu(out)
return out
class ResidualBlock(nn.Cell):
expansion = 4
def __init__(self,
in_channels,
out_channels,
stride=1):
super(ResidualBlock, self).__init__()
out_chls = out_channels // self.expansion
self.conv1 = _conv1x1(in_channels, out_chls, stride=1)
self.conv2 = _conv3x3(out_chls, out_chls, stride=stride)
self.conv3 = _conv1x1(out_chls, out_channels, stride=1)
self.relu = P.ReLU()
self.downsample = (in_channels != out_channels)
self.stride = stride
if self.downsample:
self.conv_down_sample = _conv1x1(in_channels, out_channels,
stride=stride)
elif self.stride != 1:
self.maxpool_down = nn.MaxPool2d(kernel_size=1, stride=2, pad_mode='same')
self.add = P.Add()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out = self.relu(out)
out = self.conv3(out)
if self.downsample:
identity = self.conv_down_sample(identity)
elif self.stride != 1:
identity = self.maxpool_down(identity)
out = self.add(out, identity)
out = self.relu(out)
return out
class ResNet(nn.Cell):
def __init__(self,
block,
layer_nums,
in_channels,
out_channels,
strides=None,
num_classes=100):
super(ResNet, self).__init__()
if strides is None:
strides = [1, 2, 2, 2]
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
raise ValueError("the length of "
"layer_num, inchannel, outchannel list must be 4!")
self.conv1 = _conv7x7(3, 64, stride=2)
self.bn1 = _fused_bn(64)
self.relu = P.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
self.layer1 = self._make_layer(block,
layer_nums[0],
in_channel=in_channels[0],
out_channel=out_channels[0],
stride=strides[0])
self.layer2 = self._make_layer(block,
layer_nums[1],
in_channel=in_channels[1],
out_channel=out_channels[1],
stride=strides[1])
self.layer3 = self._make_layer(block,
layer_nums[2],
in_channel=in_channels[2],
out_channel=out_channels[2],
stride=strides[2])
self.layer4 = self._make_layer(block,
layer_nums[3],
in_channel=in_channels[3],
out_channel=out_channels[3],
stride=strides[3])
self.mean = P.ReduceMean(keep_dims=True)
self.end_point = nn.Dense(2048, num_classes, has_bias=True,
weight_init=weight_variable(),
bias_init=weight_variable()).add_flags_recursive(fp16=True)
self.squeeze = P.Squeeze()
self.cast = P.Cast()
def _make_layer(self, block, layer_num, in_channel, out_channel, stride):
layers = []
resblk = block(in_channel, out_channel, stride=1)
layers.append(resblk)
for _ in range(1, layer_num - 1):
resblk = block(out_channel, out_channel, stride=1)
layers.append(resblk)
resblk = block(out_channel, out_channel, stride=stride)
layers.append(resblk)
return nn.SequentialCell(layers)
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
c1 = self.maxpool(x)
c2 = self.layer1(c1)
c3 = self.layer2(c2)
c4 = self.layer3(c3)
c5 = self.layer4(c4)
out = self.mean(c5, (2, 3))
out = self.squeeze(out)
out = self.end_point(out)
return out
def resnet50(class_num=10):
return ResNet(ResidualBlock,
[3, 4, 6, 3],
[64, 256, 512, 1024],
[256, 512, 1024, 2048],
[2, 2, 2, 1],
class_num)
class SoftmaxCrossEntropyExpand(Loss):
def __init__(self, sparse=False):
super(SoftmaxCrossEntropyExpand, self).__init__()
self.exp = P.Exp()
self.sum = P.ReduceSum(keep_dims=True)
self.onehot = P.OneHot()
self.on_value = Tensor(1.0, mstype.float32)
self.off_value = Tensor(0.0, mstype.float32)
self.div = P.Div()
self.log = P.Log()
self.sum_cross_entropy = P.ReduceSum(keep_dims=False)
self.mul = P.Mul()
self.mul2 = P.Mul()
self.cast = P.Cast()
self.mean = P.ReduceMean(keep_dims=False)
self.sparse = sparse
self.max = P.ReduceMax(keep_dims=True)
self.sub = P.Sub()
self.eps = Tensor(1e-24, mstype.float32)
def construct(self, logit, label):
logit = self.cast(logit, mstype.float32)
logit_max = self.max(logit, -1)
exp = self.exp(self.sub(logit, logit_max))
exp_sum = self.sum(exp, -1)
softmax_result = self.div(exp, exp_sum)
if self.sparse:
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
softmax_result_log = self.log(softmax_result + self.eps)
loss = self.sum_cross_entropy((self.mul(softmax_result_log, label)), -1)
loss = self.mul2(F.scalar_to_array(-1.0), loss)
loss = self.mean(loss, -1)
return loss
rank_id = int(os.environ["RANK_ID"])
device_num = int(os.environ["RANK_SIZE"])
class DataGenerator():
def get_parallel_blocks(self, input_, strategy):
blocks = [input_]
i = 0
for stra in strategy:
temp = []
while blocks:
block = blocks.pop(0)
temp.extend(np.split(block, stra, axis=i))
blocks.extend(temp)
i += 1
return blocks
def generate_data(self, shape):
data = np.arange(np.prod(shape)).reshape(shape)
return data
def input_data(self, shape):
data = (self.generate_data(shape)).astype(np.float32)
stra = [1] * len(shape)
stra[0] = device_num
data_parallel = self.get_parallel_blocks(data, stra)
return Tensor(data), Tensor(data_parallel[rank_id])
def label_data(self, shape):
data = (self.generate_data(shape) * 1000 / np.prod(shape)).astype(np.int32)
stra = [1] * len(shape)
stra[0] = device_num
data_parallel = self.get_parallel_blocks(data, stra)
return Tensor(data), Tensor(data_parallel[rank_id])
class Dataset():
def __init__(self, predict, label, length=1, input_num=2, repeat_count=1):
self.predict = predict
self.label = label
self.index = 0
self.length = length
self.input_num = input_num
self.repeat_count = repeat_count
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
if self.input_num == 2:
return (self.predict, self.label)
return (self.predict,)
def reset(self):
self.index = 0
def get_dataset_size(self):
return self.length
def get_repeat_count(self):
return self.repeat_count
class ModelCallback(Callback):
def __init__(self):
super(ModelCallback, self).__init__()
self.loss_list = []
def epoch_end(self, run_context):
cb_params = run_context.original_args()
result = cb_params.net_outputs
self.loss_list.append(result.asnumpy().mean())
def test_train_feed(num_classes=65536):
set_algo_parameters(elementwise_op_strategy_follow=True)
parallel_callback = ModelCallback()
data_gen = DataGenerator()
_, input_part = data_gen.input_data((32 * 8, 3, 224, 224))
_, label_part = data_gen.label_data((32 * 8,))
dataset = Dataset(input_part, label_part)
net = resnet50(num_classes)
loss = SoftmaxCrossEntropyExpand(sparse=True)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt)
model.train(5, dataset, dataset_sink_mode=False, callbacks=parallel_callback)
loss_value = np.array(parallel_callback.loss_list)
expect_out = [11.11153, 11.090023, 11.050361, 10.994822, 10.924148]
print(loss_value)
assert np.allclose(loss_value, expect_out, 0.0001, 0.0001)