forked from mindspore-Ecosystem/mindspore
335 lines
13 KiB
Python
335 lines
13 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import os
|
|
import numpy as np
|
|
|
|
from mindspore.communication.management import init
|
|
from mindspore.communication.management import release
|
|
from mindspore.communication.management import get_rank
|
|
from mindspore.communication.management import get_group_size
|
|
from mindspore.nn import Cell
|
|
from mindspore.nn import ReLU
|
|
from mindspore.nn import Dense
|
|
from mindspore.nn import Flatten
|
|
from mindspore.nn import Momentum
|
|
import mindspore.ops.operations as P
|
|
from mindspore.train.serialization import load_param_into_net
|
|
from mindspore.train.callback import CheckpointConfig
|
|
from mindspore.train.callback import ModelCheckpoint
|
|
from mindspore.train.serialization import load_checkpoint
|
|
|
|
from mindspore.nn import SoftmaxCrossEntropyWithLogits
|
|
from mindspore.train import Model
|
|
from mindspore.parallel import set_algo_parameters
|
|
from mindspore import Tensor
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore import context
|
|
from mindspore.context import ParallelMode
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
|
|
|
|
def _count_unequal_element(data_expected, data_me, rtol, atol):
|
|
assert data_expected.shape == data_me.shape
|
|
total_count = len(data_expected.flatten())
|
|
error = np.abs(data_expected - data_me)
|
|
greater = np.greater(error, atol + np.abs(data_me) * rtol)
|
|
loss_count = np.count_nonzero(greater)
|
|
assert (loss_count / total_count) < rtol, \
|
|
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
|
|
format(data_expected[greater], data_me[greater], error[greater])
|
|
|
|
|
|
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
|
|
if np.any(np.isnan(data_expected)):
|
|
assert np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan)
|
|
elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan):
|
|
_count_unequal_element(data_expected, data_me, rtol, atol)
|
|
else:
|
|
assert True
|
|
|
|
def clean_all_ckpt_files(folder_path):
|
|
if os.path.exists(folder_path):
|
|
for file_name in os.listdir(folder_path):
|
|
if file_name.endswith('.ckpt') or file_name.endswith('.meta'):
|
|
os.remove(os.path.join(folder_path, file_name))
|
|
|
|
|
|
def find_newest_ckpt_file(folder_path):
|
|
ckpt_files = map(lambda f: os.path.join(folder_path, f),
|
|
filter(lambda f: f.endswith('.ckpt'),
|
|
os.listdir(folder_path)))
|
|
return max(ckpt_files, key=os.path.getctime)
|
|
|
|
|
|
class FakeDataInitMode:
|
|
RandomInit = 0
|
|
OnesInit = 1
|
|
UniqueInit = 2
|
|
ZerosInit = 3
|
|
|
|
|
|
class FakeData:
|
|
def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224),
|
|
num_classes=10, random_offset=0, use_parallel=False,
|
|
fakedata_mode=FakeDataInitMode.RandomInit):
|
|
self.size = size
|
|
self.rank_batch_size = batch_size
|
|
self.total_batch_size = self.rank_batch_size
|
|
self.random_offset = random_offset
|
|
self.image_size = image_size
|
|
self.num_classes = num_classes
|
|
self.rank_size = 1
|
|
self.rank_id = 0
|
|
self.batch_index = 0
|
|
self.image_data_type = np.float32
|
|
self.label_data_type = np.float32
|
|
self.is_onehot = True
|
|
self.fakedata_mode = fakedata_mode
|
|
|
|
if use_parallel is True:
|
|
init(backend_name='hccl')
|
|
self.rank_size = get_group_size()
|
|
self.rank_id = get_rank()
|
|
|
|
self.total_batch_size = self.rank_batch_size * self.rank_size
|
|
|
|
assert (self.size % self.total_batch_size) == 0
|
|
|
|
self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
|
|
|
|
def get_dataset_size(self):
|
|
return int(self.size / self.total_batch_size)
|
|
|
|
def get_repeat_count(self):
|
|
return 1
|
|
|
|
def set_image_data_type(self, data_type):
|
|
self.image_data_type = data_type
|
|
|
|
def set_label_data_type(self, data_type):
|
|
self.label_data_type = data_type
|
|
|
|
def set_label_onehot(self, is_onehot=True):
|
|
self.is_onehot = is_onehot
|
|
|
|
def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
|
|
_ = num_epochs
|
|
return self
|
|
|
|
def __getitem__(self, batch_index):
|
|
if batch_index * self.total_batch_size >= len(self):
|
|
raise IndexError("{} index out of range".format(self.__class__.__name__))
|
|
rng_state = np.random.get_state()
|
|
np.random.seed(batch_index + self.random_offset)
|
|
if self.fakedata_mode == FakeDataInitMode.OnesInit:
|
|
img = np.ones(self.total_batch_data_size)
|
|
elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
|
|
img = np.zeros(self.total_batch_data_size)
|
|
elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
|
|
total_size = 1
|
|
for i in self.total_batch_data_size:
|
|
total_size = total_size * i
|
|
img = np.reshape(np.arange(total_size) * 0.0001, self.total_batch_data_size)
|
|
else:
|
|
img = np.random.randn(*self.total_batch_data_size)
|
|
target = np.random.randint(0, self.num_classes, size=(self.rank_size, self.rank_batch_size))
|
|
np.random.set_state(rng_state)
|
|
img = img[self.rank_id]
|
|
target = target[self.rank_id]
|
|
img_ret = img.astype(self.image_data_type)
|
|
target_ret = target.astype(self.label_data_type)
|
|
if self.is_onehot:
|
|
target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_classes))
|
|
target_onehot[np.arange(self.rank_batch_size), target] = 1
|
|
target_ret = target_onehot.astype(self.label_data_type)
|
|
return Tensor(img_ret), Tensor(target_ret)
|
|
|
|
def __len__(self):
|
|
return self.size
|
|
|
|
def __iter__(self):
|
|
self.batch_index = 0
|
|
return self
|
|
|
|
def reset(self):
|
|
self.batch_index = 0
|
|
|
|
def __next__(self):
|
|
if self.batch_index * self.total_batch_size < len(self):
|
|
data = self[self.batch_index]
|
|
self.batch_index += 1
|
|
return data
|
|
raise StopIteration
|
|
|
|
|
|
class OptimizerSemiAutoAndAutoParallel6Net(Cell):
|
|
def __init__(self, strategy_dict=None):
|
|
super().__init__()
|
|
shared_np = np.full((16, 1, 32, 32), 0.5, dtype=np.float32)
|
|
self.shared_weight = Parameter(Tensor(shared_np), name='shared_weight')
|
|
self.fc1 = Dense(in_channels=1024,
|
|
out_channels=116,
|
|
weight_init='ones',
|
|
bias_init='ones',
|
|
has_bias=True)
|
|
self.relu = ReLU()
|
|
self.sigmoid = P.Sigmoid()
|
|
self.add1 = P.Add()
|
|
self.add2 = P.Add()
|
|
self.mul1 = P.Mul().add_prim_attr('primitive_target', 'CPU')
|
|
self.mul2 = P.Mul()
|
|
self.mul3 = P.Mul()
|
|
self.flatten = Flatten()
|
|
|
|
mul2_weight_np = np.full((16, 116), 1, dtype=np.float32)
|
|
self.mul2_weight = Parameter(Tensor(mul2_weight_np), name='mul2_weight')
|
|
|
|
mul3_weight_np = np.full((16, 116), 1, dtype=np.float32)
|
|
self.mul3_weight = Parameter(Tensor(mul3_weight_np), name='mul3_weight')
|
|
|
|
if strategy_dict is not None:
|
|
self.add1.shard(strategy_dict['add1'])
|
|
self.mul1.shard(strategy_dict['mul1'])
|
|
self.fc1.matmul.shard(strategy_dict['fc1_matmul'])
|
|
self.fc1.bias_add.shard(strategy_dict['fc1_bias_add'])
|
|
self.mul2.shard(strategy_dict['mul2'])
|
|
self.mul3.shard(strategy_dict['mul3'])
|
|
|
|
def construct(self, inputs):
|
|
relu = self.relu(inputs)
|
|
sigmoid = self.sigmoid(inputs)
|
|
add1 = self.add1(relu, self.shared_weight)
|
|
mul = self.mul1(sigmoid, self.shared_weight)
|
|
add2 = self.add2(add1, mul)
|
|
flatten = self.flatten(add2)
|
|
dense = self.fc1(flatten)
|
|
mul2 = self.mul2(dense, self.mul2_weight)
|
|
out = self.mul3(mul2, self.mul3_weight)
|
|
return out
|
|
|
|
|
|
class OptimizerSemiAutoAndAutoParallelFactory:
|
|
def __init__(self, net, strategy_dict=None):
|
|
self.parallel_ckpt = None
|
|
self.optimizer_parallel_ckpt = None
|
|
self.net = net
|
|
self.strategy_dict = strategy_dict
|
|
self.global_rank_id = None
|
|
self._set_parallel_env()
|
|
self._init_parallel()
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
return
|
|
|
|
def __del__(self):
|
|
self._release_parallel()
|
|
|
|
def _set_parallel_env(self):
|
|
if 'RANK_ID' in os.environ:
|
|
self.global_rank_id = int(os.environ['RANK_ID'])
|
|
|
|
def _init_parallel(self):
|
|
self._init_parallel_flag = False
|
|
init(backend_name='hccl')
|
|
self._init_parallel_flag = True
|
|
|
|
def _release_parallel(self):
|
|
if self._init_parallel_flag:
|
|
release()
|
|
|
|
def _model_train_and_save_ckpt(self, net, dataset, epoch):
|
|
self.opt = Momentum(learning_rate=0.01, momentum=0.9, params=net.get_parameters())
|
|
self.loss_fn = SoftmaxCrossEntropyWithLogits(reduction='mean')
|
|
self.model = Model(network=net,
|
|
loss_fn=self.loss_fn,
|
|
optimizer=self.opt)
|
|
ckpt_config = CheckpointConfig(keep_checkpoint_max=1)
|
|
ckpt_path = './rank_{}_ckpt'.format(self.global_rank_id)
|
|
ckpt_callback = ModelCheckpoint(prefix='parallel', directory=ckpt_path,
|
|
config=ckpt_config)
|
|
clean_all_ckpt_files(ckpt_path)
|
|
self.model.train(epoch=epoch,
|
|
train_dataset=dataset,
|
|
callbacks=[ckpt_callback],
|
|
dataset_sink_mode=False)
|
|
newest_ckpt_file = find_newest_ckpt_file(ckpt_path)
|
|
return load_checkpoint(newest_ckpt_file)
|
|
|
|
def mindspore_auto_parallel_impl(self,
|
|
dataset,
|
|
epoch,
|
|
device_num):
|
|
set_algo_parameters(fully_use_devices=False)
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
|
|
device_num=device_num)
|
|
parallel_mode_net = self.net(self.strategy_dict)
|
|
self.parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net,
|
|
dataset=dataset, epoch=epoch)
|
|
context.reset_auto_parallel_context()
|
|
|
|
def mindspore_optimizer_auto_parallel_impl(self,
|
|
dataset,
|
|
epoch,
|
|
device_num):
|
|
set_algo_parameters(fully_use_devices=False)
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL,
|
|
device_num=device_num,
|
|
enable_parallel_optimizer=True)
|
|
parallel_mode_net = self.net(self.strategy_dict)
|
|
self.optimizer_parallel_ckpt = self._model_train_and_save_ckpt(net=parallel_mode_net,
|
|
dataset=dataset, epoch=epoch)
|
|
context.reset_auto_parallel_context()
|
|
|
|
def checkpoint_cmp(self, inputs_np):
|
|
optimizer_parallel_net = self.net(self.strategy_dict)
|
|
load_param_into_net(optimizer_parallel_net, self.optimizer_parallel_ckpt)
|
|
optimizer_parallel_out = optimizer_parallel_net(Tensor(inputs_np))
|
|
|
|
parallel_net = self.net(self.strategy_dict)
|
|
load_param_into_net(parallel_net, self.parallel_ckpt)
|
|
parallel_out = parallel_net(Tensor(inputs_np))
|
|
allclose_nparray(optimizer_parallel_out.asnumpy(), parallel_out.asnumpy(), 0.001, 0.001)
|
|
|
|
def test_optimizer_parallel_auto_4p_6_parameter_same_strategy_1_1_2_1_momentum():
|
|
inputs_np = np.random.randn(16, 1, 32, 32).astype(np.float32)
|
|
ds1 = FakeData(size=32,
|
|
batch_size=4,
|
|
image_size=(1, 32, 32),
|
|
use_parallel=True,
|
|
num_classes=116)
|
|
|
|
ds2 = FakeData(size=32,
|
|
batch_size=4,
|
|
image_size=(1, 32, 32),
|
|
use_parallel=True,
|
|
num_classes=116)
|
|
strategy_dict = {'add1': ((1, 1, 2, 1), (1, 1, 2, 1)),
|
|
'mul1': ((1, 1, 2, 1), (1, 1, 2, 1)),
|
|
'fc1_matmul': ((1, 2), (1, 2)),
|
|
'fc1_bias_add': ((1, 2), (2,)),
|
|
'mul2': ((1, 2), (1, 2)),
|
|
'mul3': ((1, 2), (1, 2))}
|
|
fact = OptimizerSemiAutoAndAutoParallelFactory(net=OptimizerSemiAutoAndAutoParallel6Net,
|
|
strategy_dict=strategy_dict)
|
|
fact.mindspore_auto_parallel_impl(dataset=ds1, epoch=2, device_num=4)
|
|
fact.mindspore_optimizer_auto_parallel_impl(dataset=ds2, epoch=2, device_num=4)
|
|
fact.checkpoint_cmp(inputs_np=inputs_np)
|