forked from mindspore-Ecosystem/mindspore
155 lines
5.4 KiB
Python
155 lines
5.4 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import os
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.communication.management as distributedTool
|
|
import mindspore.context as context
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.nn import Cell
|
|
from mindspore.ops import operations as P
|
|
|
|
device_num = 2
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
rank_id = 0
|
|
|
|
|
|
def setup_module():
|
|
global device_num
|
|
global rank_id
|
|
np.random.seed(0)
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
context.set_context(device_id=device_id)
|
|
distributedTool.init()
|
|
device_num = distributedTool.get_group_size()
|
|
rank_id = distributedTool.get_rank()
|
|
context.set_auto_parallel_context(device_num=device_num,
|
|
global_rank=rank_id)
|
|
|
|
|
|
def teardown_module():
|
|
distributedTool.release()
|
|
|
|
|
|
class Onehot(Cell):
|
|
def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, strategy=None):
|
|
super(Onehot, self).__init__()
|
|
trans_stra = None
|
|
if strategy:
|
|
trans_stra = (strategy[0],)
|
|
self.onehot = P.OneHot().shard(strategy=strategy)
|
|
self.depth = depth
|
|
self.on_value = Tensor(on_value, ms.float32)
|
|
self.off_value = Tensor(off_value, ms.float32)
|
|
self.transpose = P.Transpose().shard(strategy=trans_stra)
|
|
self.sub = P.Sub().shard(strategy=((1, 1), (1, 1)))
|
|
self.axis = axis
|
|
|
|
def construct(self, input_, indices):
|
|
x = self.onehot(indices, self.depth, self.on_value, self.off_value)
|
|
x = self.transpose(x, (1, 0))
|
|
x = self.sub(input_, x)
|
|
return x
|
|
|
|
|
|
class DataGenerator():
|
|
def get_parallel_blocks(self, input_, strategy):
|
|
blocks = [input_]
|
|
i = 0
|
|
for stra in strategy:
|
|
temp = []
|
|
while blocks:
|
|
block = blocks.pop(0)
|
|
temp.extend(np.split(block, stra, axis=i))
|
|
blocks.extend(temp)
|
|
i += 1
|
|
return blocks
|
|
|
|
def generate_data(self, shape):
|
|
data = np.random.rand(*shape)
|
|
return data
|
|
|
|
def input_data(self, shape):
|
|
data = (self.generate_data(shape) * 2).astype(np.float32)
|
|
stra = [1] * len(shape)
|
|
stra[0] = device_num
|
|
datas = self.get_parallel_blocks(data, stra)
|
|
return Tensor(data), Tensor(datas[rank_id])
|
|
|
|
def label_data(self, shape, classes):
|
|
data = (self.generate_data(shape) * (classes - 1)).astype(np.int32)
|
|
stra = [1] * len(shape)
|
|
stra[0] = device_num
|
|
datas = self.get_parallel_blocks(data, stra)
|
|
return Tensor(data), Tensor(datas[rank_id])
|
|
|
|
|
|
class OneHotFactory:
|
|
def __init__(self, batch_size, classes, on_value=1.0, off_value=0.0, axis=None, strategy=None):
|
|
data_gen = DataGenerator()
|
|
self.input_full, self.input_part = data_gen.input_data((classes, batch_size))
|
|
self.label_full, self.label_part = data_gen.label_data((batch_size,), classes)
|
|
self.depth = classes
|
|
self.on_value = on_value
|
|
self.off_value = off_value
|
|
self.axis = axis
|
|
self.strategy = strategy
|
|
|
|
def forward_mindspore_single_impl(self):
|
|
net = Onehot(axis=self.axis,
|
|
depth=self.depth,
|
|
on_value=self.on_value,
|
|
off_value=self.off_value)
|
|
out = net(self.input_full, self.label_full)
|
|
return out
|
|
|
|
def forward_mindspore_parallel_impl(self):
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
net = Onehot(axis=self.axis,
|
|
depth=self.depth,
|
|
on_value=self.on_value,
|
|
off_value=self.off_value, strategy=self.strategy)
|
|
out = net.compile_and_run(self.input_full, self.label_full)
|
|
return out
|
|
|
|
def forward_cmp(self):
|
|
out_mindspore_single = self.forward_mindspore_single_impl().asnumpy()
|
|
context.reset_auto_parallel_context()
|
|
out_mindspore_parallel = self.forward_mindspore_parallel_impl().asnumpy()
|
|
context.reset_auto_parallel_context()
|
|
assert np.allclose(out_mindspore_single, out_mindspore_parallel, 0.0001, 0.0001)
|
|
|
|
|
|
def test_reid_onehot_forward_int32_128_depth1024_model_parallel():
|
|
fact = OneHotFactory(batch_size=128,
|
|
classes=1024,
|
|
on_value=1.000000,
|
|
off_value=0.000000,
|
|
axis=-1,
|
|
strategy=((1, device_num), (), ()))
|
|
fact.forward_cmp()
|
|
|
|
|
|
def test_reid_onehot_forward_int32_1024_depth128_model_parallel():
|
|
fact = OneHotFactory(batch_size=1024,
|
|
classes=128,
|
|
on_value=1.000000,
|
|
off_value=0.000000,
|
|
axis=-1,
|
|
strategy=((1, device_num), (), ()))
|
|
fact.forward_cmp()
|