forked from mindspore-Ecosystem/mindspore
66 lines
2.6 KiB
Python
66 lines
2.6 KiB
Python
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
##############export checkpoint file into air and onnx models#################
|
|
python export.py
|
|
"""
|
|
import os
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
|
|
from src.model_utils.config import config
|
|
from src.model_utils.moxing_adapter import moxing_wrapper
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
|
|
if config.device_target == "Ascend":
|
|
context.set_context(device_id=config.device_id)
|
|
|
|
def modelarts_pre_process():
|
|
'''modelarts pre process function.'''
|
|
config.file_name = os.path.join(config.output_path, config.file_name)
|
|
|
|
@moxing_wrapper(pre_process=modelarts_pre_process)
|
|
def run_export():
|
|
"""run export."""
|
|
if config.network_dataset == 'resnet18_cifar10':
|
|
from src.resnet import resnet18 as resnet
|
|
elif config.network_dataset == 'resnet18_imagenet2012':
|
|
from src.resnet import resnet18 as resnet
|
|
elif config.network_dataset == 'resnet34_imagenet2012':
|
|
from src.resnet import resnet34 as resnet
|
|
elif config.network_dataset == 'resnet50_cifar10':
|
|
from src.resnet import resnet50 as resnet
|
|
elif config.network_dataset == 'resnet50_imagenet2012':
|
|
from src.resnet import resnet50 as resnet
|
|
elif config.network_dataset == 'resnet101_imagenet2012':
|
|
from src.resnet import resnet101 as resnet
|
|
elif config.network_dataset == 'se-resnet50_imagenet2012':
|
|
from src.resnet import se_resnet50 as resnet
|
|
else:
|
|
raise ValueError("network and dataset is not support.")
|
|
|
|
net = resnet(config.class_num)
|
|
|
|
assert config.checkpoint_file_path is not None, "checkpoint_path is None."
|
|
|
|
param_dict = load_checkpoint(config.checkpoint_file_path)
|
|
load_param_into_net(net, param_dict)
|
|
|
|
input_arr = Tensor(np.zeros([config.batch_size, 3, config.height, config.width], np.float32))
|
|
export(net, input_arr, file_name=config.file_name, file_format=config.file_format)
|
|
|
|
if __name__ == '__main__':
|
|
run_export()
|