forked from mindspore-Ecosystem/mindspore
48 lines
2.2 KiB
Python
Executable File
48 lines
2.2 KiB
Python
Executable File
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
##############export checkpoint file into geir and onnx models#################
|
|
"""
|
|
import argparse
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
|
|
|
|
from src.config import nasnet_a_mobile_config_gpu as cfg
|
|
from src.nasnet_a_mobile import NASNetAMobile
|
|
|
|
parser = argparse.ArgumentParser(description='nasnet export')
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
|
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
|
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
|
parser.add_argument("--file_name", type=str, default="nasnet", help="output file name.")
|
|
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
|
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
|
help="device target")
|
|
args = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
if args.device_target == "Ascend":
|
|
context.set_context(device_id=args.device_id)
|
|
|
|
if __name__ == '__main__':
|
|
net = NASNetAMobile(num_classes=cfg.num_classes, is_training=False)
|
|
param_dict = load_checkpoint(args.ckpt_file)
|
|
load_param_into_net(net, param_dict)
|
|
|
|
input_arr = Tensor(np.ones([args.batch_size, 3, cfg.image_size, cfg.image_size]), ms.float32)
|
|
export(net, input_arr, file_name=args.file_name, file_format=args.file_format)
|