forked from mindspore-Ecosystem/mindspore
zhaoting 5aad67cb33 | ||
---|---|---|
.. | ||
scripts | ||
src | ||
README.md | ||
README_CN.md | ||
eval.py | ||
export.py | ||
train.py |
README.md
Contents
- NASNet Description
- Model Architecture
- Dataset
- Environment Requirements
- Quick Start
- Script Description
- Model Description
- ModelZoo Homepage
NASNet Description
Paper: Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le. Learning Transferable Architectures for Scalable Image Recognition. 2017.
Model architecture
The overall network architecture of NASNet is show below:
Dataset
Dataset used: imagenet
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
- Train: 120G, 1.2W images
- Test: 5G, 50000 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
Environment Requirements
- Hardware GPU
- Prepare hardware environment with GPU processor.
- Framework
- For more information, please check the resources below:
Script description
Script and sample code
.
└─nasnet
├─README.md
├─scripts
├─run_standalone_train_for_gpu.sh # launch standalone training with gpu platform(1p)
├─run_distribute_train_for_gpu.sh # launch distributed training with gpu platform(8p)
└─run_eval_for_gpu.sh # launch evaluating with gpu platform
├─src
├─config.py # parameter configuration
├─dataset.py # data preprocessing
├─loss.py # Customized CrossEntropy loss function
├─lr_generator.py # learning rate generator
├─nasnet_a_mobile.py # network definition
├─eval.py # eval net
├─export.py # convert checkpoint
└─train.py # train net
Script Parameters
Parameters for both training and evaluating can be set in config.py.
'random_seed': 1, # fix random seed
'rank': 0, # local rank of distributed
'group_size': 1, # world size of distributed
'work_nums': 8, # number of workers to read the data
'epoch_size': 500, # total epoch numbers
'keep_checkpoint_max': 100, # max numbers to keep checkpoints
'ckpt_path': './checkpoint/', # save checkpoint path
'is_save_on_master': 1 # save checkpoint on rank0, distributed parameters
'batch_size': 32, # input batchsize
'num_classes': 1000, # dataset class numbers
'label_smooth_factor': 0.1, # label smoothing factor
'aux_factor': 0.4, # loss factor of aux logit
'lr_init': 0.04, # initiate learning rate
'lr_decay_rate': 0.97, # decay rate of learning rate
'num_epoch_per_decay': 2.4, # decay epoch number
'weight_decay': 0.00004, # weight decay
'momentum': 0.9, # momentum
'opt_eps': 1.0, # epsilon
'rmsprop_decay': 0.9, # rmsprop decay
'loss_scale': 1, # loss scale
Training Process
Usage
GPU:
# distribute training example(8p)
sh run_distribute_train_for_gpu.sh DATA_DIR
# standalone training
sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_DIR
Launch
# distributed training example(8p) for GPU
sh scripts/run_distribute_train_for_gpu.sh /dataset/train
# standalone training example for GPU
sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train
You can find checkpoint file together with result in log.
Evaluation Process
Usage
# Evaluation
sh run_eval_for_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
Launch
# Evaluation with checkpoint
sh scripts/run_eval_for_gpu.sh 0 /dataset/val ./checkpoint/nasnet-a-mobile-rank0-248_10009.ckpt
Result
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
acc=73.5%(TOP1)
Model description
Performance
Training Performance
Parameters | NASNet |
---|---|
Resource | NV SMX2 V100-32G |
uploaded Date | 09/24/2020 |
MindSpore Version | 1.0.0 |
Dataset | ImageNet |
Training Parameters | src/config.py |
Optimizer | Momentum |
Loss Function | SoftmaxCrossEntropyWithLogits |
Loss | 1.8965 |
Total time | 144 h 8ps |
Checkpoint for Fine tuning | 89 M(.ckpt file) |
Inference Performance
Parameters | |
---|---|
Resource | NV SMX2 V100-32G |
uploaded Date | 09/24/2020 |
MindSpore Version | 1.0.0 |
Dataset | ImageNet, 1.2W |
batch_size | 32 |
outputs | probability |
Accuracy | acc=73.5%(TOP1) |
ModelZoo Homepage
Please check the official homepage.