43948d255a | ||
---|---|---|
.. | ||
ascend310_infer | ||
scripts | ||
src | ||
Readme.md | ||
Readme_CN.md | ||
eval_quant.py | ||
export.py | ||
export_bin_file.py | ||
postprocess.py | ||
train_quant.py |
Readme.md
Contents
- LeNet Description
- Model Architecture
- Dataset
- Environment Requirements
- Quick Start
- Script Description
- Model Description
- ModelZoo Homepage
LeNet Description
LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success.
Paper: Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE. 1998.
This is the quantitative network of LeNet.
Model Architecture
LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers.
Dataset
Dataset used: MNIST
-
Dataset size 52.4M 60,000 28*28 in 10 classes
- Train 60,000 images
- Test 10,000 images
-
Data format binary files
- Note Data will be processed in dataset.py
-
The directory structure is as follows:
└─Data
├─test
│ t10k-images.idx3-ubyte
│ t10k-labels.idx1-ubyte
│
└─train
train-images.idx3-ubyte
train-labels.idx1-ubyte
Environment Requirements
- Hardware:Ascend
- Prepare hardware environment with Ascend
- Framework
- For more information, please check the resources below:
Quick Start
After installing MindSpore via the official website, you can start training and evaluation as follows:
# enter ../lenet directory and train lenet network,then a '.ckpt' file will be generated.
sh run_standalone_train_ascend.sh [DATA_PATH]
# enter lenet dir, train LeNet-Quant
python train.py --device_target=Ascend --data_path=[DATA_PATH] --ckpt_path=[CKPT_PATH] --dataset_sink_mode=True
#evaluate LeNet-Quant
python eval.py --device_target=Ascend --data_path=[DATA_PATH] --ckpt_path=[CKPT_PATH] --dataset_sink_mode=True
Script Description
Script and Sample Code
├── model_zoo
├── README.md // descriptions about all the models
├── lenet_quant
├── README.md // descriptions about LeNet-Quant
├── ascend310_infer // application for 310 inference
├── scripts
├── run_infer_310.sh // shell script for 310 inference
├── src
│ ├── config.py // parameter configuration
│ ├── dataset.py // creating dataset
│ ├── lenet_fusion.py // auto constructed quantitative network model of LeNet-Quant
│ ├── lenet_quant.py // manual constructed quantitative network model of LeNet-Quant
│ ├── loss_monitor.py //monitor of network's loss and other data
├── requirements.txt // package needed
├── train.py // training LeNet-Quant network with device Ascend
├── eval.py // evaluating LeNet-Quant network with device Ascend
├── export_bin_file.py // export bin file of MNIST for 310 inference
├── postprocess.py // post process for 310 inference
Script Parameters
Major parameters in train.py and config.py as follows:
--data_path: The absolute full path to the train and evaluation datasets.
--epoch_size: Total training epochs.
--batch_size: Training batch size.
--image_height: Image height used as input to the model.
--image_width: Image width used as input the model.
--device_target: Device where the code will be implemented. Optional values
are "Ascend", "GPU", "CPU".Only "Ascend" is supported now.
--ckpt_path: The absolute full path to the checkpoint file saved
after training.
--data_path: Path where the dataset is saved
Training Process
Training
python train.py --device_target=Ascend --dataset_path=/home/datasets/MNIST --dataset_sink_mode=True > log.txt 2>&1 &
After training, the loss value will be achieved as follows:
# grep "Epoch " log.txt
Epoch: [ 1/ 10], step: [ 937/ 937], loss: [0.0081], avg loss: [0.0081], time: [11268.6832ms]
Epoch time: 11269.352, per step time: 12.027, avg loss: 0.008
Epoch: [ 2/ 10], step: [ 937/ 937], loss: [0.0496], avg loss: [0.0496], time: [3085.2389ms]
Epoch time: 3085.641, per step time: 3.293, avg loss: 0.050
Epoch: [ 3/ 10], step: [ 937/ 937], loss: [0.0017], avg loss: [0.0017], time: [3085.3510ms]
...
...
The model checkpoint will be saved in the current directory.
Evaluation Process
Evaluation
Before running the command below, please check the checkpoint path used for evaluation.
python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_937.ckpt > log.txt 2>&1 &
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
# grep "Accuracy: " log.txt
'Accuracy': 0.9842
Model Export
python export.py --ckpt_path [CKPT_PATH] --data_path [DATA_PATH] --device_target [PLATFORM]
Ascend 310 inference
You should export AIR model at Ascend 910 before running the command below. You can use export_bin_file.py to export MNIST bin and label for 310 inference.
python export_bin_file.py --dataset_dir [DATASET_PATH] --save_dir [SAVE_PATH]
Run run_infer_310.sh and get the accuracy:
# Ascend310 inference
bash run_infer_310.sh [AIR_PATH] [DATA_PATH] [LABEL_PATH] [DEVICE_ID]
You can view the results through the file "acc.log". The accuracy of the test dataset will be as follows:
'Accuracy':0.9883
Model Description
Performance
Evaluation Performance
Parameters | LeNet |
---|---|
Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 |
uploaded Date | 06/09/2020 (month/day/year) |
MindSpore Version | 0.5.0-beta |
Dataset | MNIST |
Training Parameters | epoch=10, steps=937, batch_size = 64, lr=0.01 |
Optimizer | Momentum |
Loss Function | Softmax Cross Entropy |
outputs | probability |
Loss | 0.002 |
Speed | 3.29 ms/step |
Total time | 40s |
Checkpoint for Fine tuning | 482k (.ckpt file) |
Scripts | scripts |
Description of Random Situation
In dataset.py, we set the seed inside “create_dataset" function.
ModelZoo Homepage
Please check the official homepage.