mindspore/model_zoo/official/cv/inceptionv4/eval.py

124 lines
4.9 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""evaluate_imagenet"""
import time
import os
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.device_adapter import get_device_id, get_device_num
from src.dataset import create_dataset_imagenet, create_dataset_cifar10
from src.inceptionv4 import Inceptionv4
import mindspore.nn as nn
from mindspore import context
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
def modelarts_process():
""" modelarts process """
def unzip(zip_file, save_dir):
import zipfile
s_time = time.time()
if not os.path.exists(os.path.join(save_dir, config.modelarts_dataset_unzip_name)):
zip_isexist = zipfile.is_zipfile(zip_file)
if zip_isexist:
fz = zipfile.ZipFile(zip_file, 'r')
data_num = len(fz.namelist())
print('Extract Start...')
print('unzip file num: {}'.format(data_num))
data_print = int(data_num / 100) if data_num > 100 else 1
i = 0
for file in fz.namelist():
if i % data_print == 0:
print('unzip percent: {}%'.format(int(i * 100 / data_num)), flush=True)
i += 1
fz.extract(file, save_dir)
print('cost time: {}min:{}s.'.format(int((time.time() - s_time) / 60),\
int(int(time.time() - s_time) % 60)))
print('Extract Done')
else:
print('This is not zip.')
else:
print('Zip has been extracted.')
if config.need_modelarts_dataset_unzip:
zip_file_1 = os.path.join(config.data_path, config.modelarts_dataset_unzip_name + '.zip')
save_dir_1 = os.path.join(config.data_path)
sync_lock = '/tmp/unzip_sync.lock'
# Each server contains 8 devices as most
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
print('Zip file path: ', zip_file_1)
print('Unzip file save dir: ', save_dir_1)
unzip(zip_file_1, save_dir_1)
print('===Finish extract data synchronization===')
try:
os.mknod(sync_lock)
except IOError:
pass
while True:
if os.path.exists(sync_lock):
break
time.sleep(1)
print('Device: {}, Finish sync unzip data from {} to {}.'.format(get_device_id(), zip_file_1, save_dir_1))
print('#' * 200, os.listdir(save_dir_1))
print('#' * 200, os.listdir(os.path.join(config.data_path, config.modelarts_dataset_unzip_name)))
config.dataset_path = os.path.join(config.data_path, config.modelarts_dataset_unzip_name)
config.checkpoint_path = os.path.join(config.dataset_path, config.checkpoint_path)
DS_DICT = {
"imagenet": create_dataset_imagenet,
"cifar10": create_dataset_cifar10,
}
@moxing_wrapper(pre_process=modelarts_process)
def inception_v4_eval():
if config.platform == 'Ascend':
device_id = int(os.getenv('DEVICE_ID', '0'))
context.set_context(device_id=device_id)
create_dataset = DS_DICT[config.ds_type]
context.set_context(mode=context.GRAPH_MODE, device_target=config.platform)
net = Inceptionv4(classes=config.num_classes)
ckpt = load_checkpoint(config.checkpoint_path)
load_param_into_net(net, ckpt)
net.set_train(False)
config.rank = 0
config.group_size = 1
dataset = create_dataset(dataset_path=config.dataset_path, do_train=False, cfg=config)
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
eval_metrics = {'Loss': nn.Loss(),
'Top1-Acc': nn.Top1CategoricalAccuracy(),
'Top5-Acc': nn.Top5CategoricalAccuracy()}
model = Model(net, loss, optimizer=None, metrics=eval_metrics)
print('=' * 20, 'Evalute start', '=' * 20)
metrics = model.eval(dataset, dataset_sink_mode=config.ds_sink_mode)
print("metric: ", metrics)
if __name__ == '__main__':
config.dataset_path = os.path.join(config.dataset_path, 'validation_preprocess')
inception_v4_eval()