40d9b537cb | ||
---|---|---|
.. | ||
ascend310_infer | ||
scripts | ||
src | ||
README.md | ||
README_CN.md | ||
default_config.yaml | ||
default_config_cpu.yaml | ||
default_config_gpu.yaml | ||
eval.py | ||
export.py | ||
mindspore_hub_conf.py | ||
postprocess.py | ||
train.py |
README.md
Contents
- InceptionV3 Description
- Model Architecture
- Dataset
- Features
- Environment Requirements
- Script Description
- Model Description
- Description of Random Situation
- ModelZoo Homepage
InceptionV3 Description
InceptionV3 by Google is the 3rd version in a series of Deep Learning Convolutional Architectures. Inception v3 mainly focuses on burning less computational power by modifying the previous Inception architectures. This idea was proposed in the paper Rethinking the Inception Architecture for Computer Vision, published in 2015.
Paper Min Sun, Ali Farhadi, Steve Seitz. Ranking Domain-Specific Highlights by Analyzing Edited Videos[J]. 2014.
Model architecture
The overall network architecture of InceptionV3 is show below:
Dataset
Dataset used can refer to paper.
- Dataset size: 125G, 1250k colorful images in 1000 classes
- Train: 120G, 1200k images
- Test: 5G, 50k images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
Dataset used: CIFAR-10
- Dataset size: 175M, 60,000 32*32 colorful images in 10 classes
- Train: 146M, 50,000 images
- Test: 29M, 10,000 images
- Data format:binary files
- Note:Data will be processed in src/dataset.py
Features
Mixed Precision(Ascend)
The mixed precision training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
Environment Requirements
-
Hardware(Ascend)
-
Prepare hardware environment with Ascend processor.
-
Framework
-
For more information, please check the resources below:
-
Running on ModelArts
# Train 8p with Ascend # (1) Perform a or b. # a. Set "enable_modelarts=True" on default_config.yaml file. # Set "distribute=True" on default_config.yaml file. # Set "need_modelarts_dataset_unzip=True" on default_config.yaml file. # Set "modelarts_dataset_unzip_name='ImageNet_Original'" on default_config.yaml file. # Set "lr_init=0.00004" on default_config.yaml file. # Set "dataset_path='/cache/data'" on default_config.yaml file. # Set "epoch_size=250" on default_config.yaml file. # (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file. # Set other parameters on default_config.yaml file you need. # b. Add "enable_modelarts=True" on the website UI interface. # Add "need_modelarts_dataset_unzip=True" on the website UI interface. # Add "modelarts_dataset_unzip_name='ImageNet_Original'" on the website UI interface. # Add "distribute=True" on the website UI interface. # Add "lr_init=0.00004" on the website UI interface. # Add "dataset_path=/cache/data" on the website UI interface. # Add "epoch_size=250" on the website UI interface. # (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface. # Add other parameters on the website UI interface. # (2) Prepare model code # (3) Upload or copy your pretrained model to S3 bucket if you want to finetune. # (4) Perform a or b. (suggested option a) # a. First, zip MindRecord dataset to one zip file. # Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.) # b. Upload the original coco dataset to S3 bucket. # (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.) # (5) Set the code directory to "/path/inceptionv3" on the website UI interface. # (6) Set the startup file to "train.py" on the website UI interface. # (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface. # (8) Create your job. # # Train 1p with Ascend # (1) Perform a or b. # a. Set "enable_modelarts=True" on default_config.yaml file. # Set "need_modelarts_dataset_unzip=True" on default_config.yaml file. # Set "modelarts_dataset_unzip_name='ImageNet_Original'" on default_config.yaml file. # Set "dataset_path='/cache/data'" on default_config.yaml file. # Set "epoch_size=250" on default_config.yaml file. # (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file. # Set other parameters on default_config.yaml file you need. # b. Add "enable_modelarts=True" on the website UI interface. # Add "need_modelarts_dataset_unzip=True" on the website UI interface. # Add "modelarts_dataset_unzip_name='ImageNet_Original'" on the website UI interface. # Add "dataset_path='/cache/data'" on the website UI interface. # Add "epoch_size=250" on the website UI interface. # (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface. # Add other parameters on the website UI interface. # (2) Prepare model code # (3) Upload or copy your pretrained model to S3 bucket if you want to finetune. # (4) Perform a or b. (suggested option a) # a. zip MindRecord dataset to one zip file. # Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.) # b. Upload the original coco dataset to S3 bucket. # (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.) # (5) Set the code directory to "/path/inceptionv3" on the website UI interface. # (6) Set the startup file to "train.py" on the website UI interface. # (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface. # (8) Create your job. # # Eval 1p with Ascend # (1) Perform a or b. # a. Set "enable_modelarts=True" on default_config.yaml file. # Set "need_modelarts_dataset_unzip=True" on default_config.yaml file. # Set "modelarts_dataset_unzip_name='ImageNet_Original'" on default_config.yaml file. # Set "checkpoint_url='s3://dir_to_your_trained_model/'" on base_config.yaml file. # Set "checkpoint='./inceptionv3/inceptionv3-rank3_1-247_1251.ckpt'" on default_config.yaml file. # Set "dataset_path='/cache/data'" on default_config.yaml file. # Set other parameters on default_config.yaml file you need. # b. Add "enable_modelarts=True" on the website UI interface. # Add "need_modelarts_dataset_unzip=True" on the website UI interface. # Add "modelarts_dataset_unzip_name='ImageNet_Original'" on the website UI interface. # Add "checkpoint_url='s3://dir_to_your_trained_model/'" on the website UI interface. # Add "checkpoint='./inceptionv3/inceptionv3-rank3_1-247_1251.ckpt'" on the website UI interface. # Add "dataset_path='/cache/data'" on the website UI interface. # Add other parameters on the website UI interface. # (2) Prepare model code # (3) Upload or copy your trained model to S3 bucket. # (4) Perform a or b. (suggested option a) # a. First, zip MindRecord dataset to one zip file. # Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.) # b. Upload the original coco dataset to S3 bucket. # (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.) # (5) Set the code directory to "/path/inceptionv3" on the website UI interface. # (6) Set the startup file to "eval.py" on the website UI interface. # (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface. # (8) Create your job.
Script description
Script and sample code
.
└─Inception-v3
├─README.md
├─ascend310_infer # application for 310 inference
├─scripts
├─run_standalone_train_cpu.sh # launch standalone training with cpu platform
├─run_standalone_train_gpu.sh # launch standalone training with gpu platform(1p)
├─run_distribute_train_gpu.sh # launch distributed training with gpu platform(8p)
├─run_standalone_train.sh # launch standalone training with ascend platform(1p)
├─run_distribute_train.sh # launch distributed training with ascend platform(8p)
├─run_infer_310.sh # shell script for 310 inference
├─run_eval_cpu.sh # launch evaluation with cpu platform
├─run_eval_gpu.sh # launch evaluation with gpu platform
└─run_eval.sh # launch evaluating with ascend platform
├─src
├─dataset.py # data preprocessing
├─inception_v3.py # network definition
├─loss.py # Customized CrossEntropy loss function
├─lr_generator.py # learning rate generator
└─model_utils
├─config.py # Processing configuration parameters
├─device_adapter.py # Get cloud ID
├─local_adapter.py # Get local ID
└─moxing_adapter.py # Parameter processing
├─default_config.yaml # Training parameter profile(ascend)
├─default_config_cpu.yaml # Training parameter profile(cpu)
├─default_config_gpu.yaml # Training parameter profile(gpu)
├─eval.py # eval net
├─export.py # convert checkpoint
├─postprogress.py # post process for 310 inference
└─train.py # train net
Script Parameters
Major parameters in train.py and config.py are:
'random_seed' # fix random seed
'work_nums' # number of workers to read the data
'decay_method' # learning rate scheduler mode
"loss_scale" # loss scale
'batch_size' # input batchsize
'epoch_size' # total epoch numbers
'num_classes' # dataset class numbers
'ds_type' # dataset type, such as: imagenet, cifar10
'ds_sink_mode' # whether enable dataset sink mode
'smooth_factor' # label smoothing factor
'aux_factor' # loss factor of aux logit
'lr_init' # initiate learning rate
'lr_max' # max bound of learning rate
'lr_end' # min bound of learning rate
'warmup_epochs' # warmup epoch numbers
'weight_decay' # weight decay
'momentum' # momentum
'opt_eps' # epsilon
'keep_checkpoint_max' # max numbers to keep checkpoints
'ckpt_path' # save checkpoint path
'is_save_on_master' # save checkpoint on rank0, distributed parameters
'dropout_keep_prob' # the keep rate, between 0 and 1, e.g. keep_prob = 0.9, means dropping out 10% of input units
'has_bias' # specifies whether the layer uses a bias vector.
'amp_level' # option for argument `level` in `mindspore.amp.build_train_network`, level for mixed
# precision training. Supports [O0, O2, O3].
Training process
Usage
You can start training using python or shell scripts. The usage of shell scripts as follows:
- Ascend:
# distribute training(8p)
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
# standalone training
sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
- CPU:
# standalone training
sh scripts/run_standalone_train_cpu.sh DATA_PATH
Notes: RANK_TABLE_FILE can refer to Link, and the device_ip can be got as Link. For large models like InceptionV3, it's better to export an external environment variable
export HCCL_CONNECT_TIMEOUT=600
to extend hccl connection checking time from the default 120 seconds to 600 seconds. Otherwise, the connection could be timeout since compiling time increases with the growth of model size.This is processor cores binding operation regarding the
device_num
and total processor numbers. If you are not expect to do it, remove the operationstaskset
inscripts/run_distribute_train.sh
Launch
# training example
python:
Ascend: python train.py --config_path CONFIG_FILE --dataset_path DATA_PATH --platform Ascend
CPU: python train.py --config_path CONFIG_FILE --dataset_path DATA_PATH --platform CPU
shell:
Ascend:
# distribute training example(8p)
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
# standalone training example
sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
CPU:
sh script/run_standalone_train_cpu.sh DATA_PATH
Result
Training result will be stored in the example path. Checkpoints will be stored at . /checkpoint
by default, and training log will be redirected to ./log.txt
like followings.
Ascend
epoch: 0 step: 1251, loss is 5.7787247
epoch time: 360760.985 ms, per step time: 288.378 ms
epoch: 1 step: 1251, loss is 4.392868
epoch time: 160917.911 ms, per step time: 128.631 ms
CPU
epoch: 1 step: 390, loss is 2.7072601
epoch time: 6334572.124 ms, per step time: 16242.493 ms
epoch: 2 step: 390, loss is 2.5908582
epoch time: 6217897.644 ms, per step time: 15943.327 ms
epoch: 3 step: 390, loss is 2.5612416
epoch time: 6358482.104 ms, per step time: 16303.800 ms
...
Eval process
Usage
You can start training using python or shell scripts. The usage of shell scripts as follows:
- Ascend:
sh scripts/run_eval.sh DEVICE_ID DATA_PATH PATH_CHECKPOINT
- CPU:
sh scripts/run_eval_cpu.sh DATA_PATH PATH_CHECKPOINT
Launch
# eval example
python:
Ascend: python eval.py --config_path CONFIG_FILE --dataset_path DATA_PATH --checkpoint PATH_CHECKPOINT --platform Ascend
CPU: python eval.py --config_path CONFIG_FILE --dataset_path DATA_PATH --checkpoint PATH_CHECKPOINT --platform CPU
shell:
Ascend: sh scripts/run_eval.sh DEVICE_ID DATA_PATH PATH_CHECKPOINT
CPU: sh scripts/run_eval_cpu.sh DATA_PATH PATH_CHECKPOINT
checkpoint can be produced in training process.
Result
Evaluation result will be stored in the example path, you can find result like the followings in eval.log
.
metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
Model Export
python export.py --config_path CONFIG_FILE --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT]
EXPORT_FORMAT
should be in ["AIR", "MINDIR"]
Inference Process
Usage
Before performing inference, the model file must be exported by export script on the Ascend910 environment.
# Ascend310 inference
sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
-NOTE: Ascend310 inference use Imagenet dataset . The label of the image is the number of folder which is started from 0 after sorting.
result
Inference result is saved in current path, you can find result like this in acc.log file.
accuracy:78.742
Model description
Performance
Evaluation Performance
Parameters | Ascend |
---|---|
Model Version | InceptionV3 |
Resource | Ascend 910; cpu 2.60GHz, 192cores; memory 755G; OS Euler2.8 |
uploaded Date | 08/21/2020 |
MindSpore Version | 0.6.0-beta |
Dataset | 1200k images |
Batch_size | 128 |
Training Parameters | src/model_utils/default_config.yaml |
Optimizer | RMSProp |
Loss Function | SoftmaxCrossEntropy |
Outputs | probability |
Loss | 1.98 |
Total time (8p) | 11h |
Params (M) | 103M |
Checkpoint for Fine tuning | 313M |
Model for inference | 92M (.onnx file) |
Speed | 1pc:1050 img/s;8pc:8000 img/s |
Scripts | inceptionv3 script |
Inference Performance
Parameters | Ascend |
---|---|
Model Version | InceptionV3 |
Resource | Ascend 910; cpu 2.60GHz, 192cores; memory 755G; OS Euler2.8 |
Uploaded Date | 08/22/2020 |
MindSpore Version | 0.6.0-beta |
Dataset | 50k images |
Batch_size | 128 |
Outputs | probability |
Accuracy | ACC1[78.8%] ACC5[94.2%] |
Total time | 2mins |
Description of Random Situation
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
ModelZoo Homepage
Please check the official homepage.