mindspore/model_zoo/official/cv/cnnctc/eval.py

110 lines
4.1 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""cnnctc eval"""
import argparse
import time
import numpy as np
from mindspore import Tensor, context
import mindspore.common.dtype as mstype
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.dataset import GeneratorDataset
from src.util import CTCLabelConverter, AverageMeter
from src.config import Config_CNNCTC
from src.dataset import IIIT_Generator_batch
from src.cnn_ctc import CNNCTC_Model
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False,
save_graphs_path=".", enable_auto_mixed_precision=False)
def test_dataset_creator():
ds = GeneratorDataset(IIIT_Generator_batch, ['img', 'label_indices', 'text', 'sequence_length', 'label_str'])
return ds
def test(config):
ds = test_dataset_creator()
net = CNNCTC_Model(config.NUM_CLASS, config.HIDDEN_SIZE, config.FINAL_FEATURE_WIDTH)
ckpt_path = config.CKPT_PATH
param_dict = load_checkpoint(ckpt_path)
load_param_into_net(net, param_dict)
print('parameters loaded! from: ', ckpt_path)
converter = CTCLabelConverter(config.CHARACTER)
model_run_time = AverageMeter()
npu_to_cpu_time = AverageMeter()
postprocess_time = AverageMeter()
count = 0
correct_count = 0
for data in ds.create_tuple_iterator():
img, _, text, _, length = data
img_tensor = Tensor(img, mstype.float32)
model_run_begin = time.time()
model_predict = net(img_tensor)
model_run_end = time.time()
model_run_time.update(model_run_end - model_run_begin)
npu_to_cpu_begin = time.time()
model_predict = np.squeeze(model_predict.asnumpy())
npu_to_cpu_end = time.time()
npu_to_cpu_time.update(npu_to_cpu_end - npu_to_cpu_begin)
postprocess_begin = time.time()
preds_size = np.array([model_predict.shape[1]] * config.TEST_BATCH_SIZE)
preds_index = np.argmax(model_predict, 2)
preds_index = np.reshape(preds_index, [-1])
preds_str = converter.decode(preds_index, preds_size)
postprocess_end = time.time()
postprocess_time.update(postprocess_end - postprocess_begin)
label_str = converter.reverse_encode(text.asnumpy(), length.asnumpy())
if count == 0:
model_run_time.reset()
npu_to_cpu_time.reset()
postprocess_time.reset()
else:
print('---------model run time--------', model_run_time.avg)
print('---------npu_to_cpu run time--------', npu_to_cpu_time.avg)
print('---------postprocess run time--------', postprocess_time.avg)
print("Prediction samples: \n", preds_str[:5])
print("Ground truth: \n", label_str[:5])
for pred, label in zip(preds_str, label_str):
if pred == label:
correct_count += 1
count += 1
print('accuracy: ', correct_count / count)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="FasterRcnn training")
parser.add_argument('--device_id', type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--ckpt_path", type=str, default="", help="trained file path.")
args_opt = parser.parse_args()
cfg = Config_CNNCTC()
if args_opt.ckpt_path != "":
cfg.CKPT_PATH = args_opt.ckpt_path
test(cfg)