mindspore/example/graph_to_mindrecord
heleiwang 599a449e0b Support processing GNN data 2020-05-22 14:15:25 +08:00
..
citeseer Support processing GNN data 2020-05-22 14:15:25 +08:00
cora Support processing GNN data 2020-05-22 14:15:25 +08:00
README.md Support processing GNN data 2020-05-22 14:15:25 +08:00
read_citeseer.sh Support processing GNN data 2020-05-22 14:15:25 +08:00
read_cora.sh Support processing GNN data 2020-05-22 14:15:25 +08:00
reader.py Support processing GNN data 2020-05-22 14:15:25 +08:00
write_citeseer.sh Support processing GNN data 2020-05-22 14:15:25 +08:00
write_cora.sh Support processing GNN data 2020-05-22 14:15:25 +08:00
writer.py Support processing GNN data 2020-05-22 14:15:25 +08:00

README.md

Guideline to Efficiently Generating MindRecord

What does the example do

This example provides an efficient way to generate MindRecord. Users only need to define the parallel granularity of training data reading and the data reading function of a single task. That is, they can efficiently convert the user's training data into MindRecord.

  1. write_cora.sh: entry script, users need to modify parameters according to their own training data.
  2. writer.py: main script, called by write_cora.sh, it mainly reads user training data in parallel and generates MindRecord.
  3. cora/mr_api.py: uers define their own parallel granularity of training data reading and single task reading function through the cora.

Example test for Cora

  1. Download and prepare the Cora dataset as required.

    Cora dataset download address

  2. Edit write_cora.sh and modify the parameters

    --mindrecord_file: output MindRecord file.
    --mindrecord_partitions: the partitions for MindRecord.
    
  3. Run the bash script

    bash write_cora.sh
    

How to use the example for other dataset

Create work space

Assume the dataset name is 'xyz'

  • Create work space from cora
    cd ${your_mindspore_home}/example/graph_to_mindrecord
    cp -r cora xyz
    

Implement data generator

Edit dictionary data generator.

  • Edit file
    cd ${your_mindspore_home}/example/graph_to_mindrecord
    vi xyz/mr_api.py
    

Two API, 'mindrecord_task_number' and 'mindrecord_dict_data', must be implemented.

  • 'mindrecord_task_number()' returns number of tasks. Return 1 if data row is generated serially. Return N if generator can be split into N parallel-run tasks.
  • 'mindrecord_dict_data(task_id)' yields dictionary data row by row. 'task_id' is 0..N-1, if N is return value of mindrecord_task_number()

Run data generator

  • run python script
    cd ${your_mindspore_home}/example/graph_to_mindrecord
    python writer.py --mindrecord_script xyz [...]
    

    You can put this command in script write_xyz.sh for easy execution